10 Karmarkars Algorithm

> inequalities Ax < b; m X n matrix A with rows aiT
={x | Ax < b}, P°:= {x | Ax < b}
> interior point algorithm: x € P° throughout the algorithm
» for x € P° define
si(x):=b; -

as the slack of the i-th constraint

logarithmic barrier function:

P (x) == > log(si(x))

i=1

Penalty for point x; points close to the boundary have a very
large penalty.

_________________________

IThroughout this section a; denotes the |
| i-th row as a column vector. \

Penalty Function
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Penalty Function
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Gradient and Hessian

Taylor approximation:
b(x+e)=px)+Vpx)e+ = 5 Lerge b(x)e

Gradient:
VoS L.
= six)

1/sm(x)). (dx vector of inverse slacks)

al = Ade

where d = (1/s1(x),...,

Hessian:
m

Hy = Vi¢p(x) = Z ﬁ = ATD{A

with Dy = diag(dy).




Proof for Gradient

o0 (x)

0Xi

ai( Zlnm(x)))
gaa(ln(sr(x))) ;sy(x) 8xl< T(X))
-2

Sy(x) ax; ( ar ) ; ST(X) ax; ( $x>

1
R

” Sy (x)

The i-th entry of the gradient vector is >, 1/s,(x) - Ayi. This
gives that the gradient is

Ve (x) =D 1/sr(x)ar = Aldy

Proof for Hessian

aij(zw(lx) ) ZA”( Mic)z)'aaxj(sr(x)>
- S i

Note that >, A, A, = (ATA)U. Adding the additional factors
1/s,(x)? can be done with a diagonal matrix.

Hence the Hessian is
Hy, = ATD?A

Properties of the Hessian

Hy is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|[DxAull3 = 0

This gives that ¢(x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u'Hyu = |DyAull3 > 0 for u # 0
This gives that ¢ (x) is strictly convex.

llullg, == vul Hyu is a (semi-)norm; the unit ball w.r.t. this norm
is an ellipsoid.
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Dikin Ellipsoid

Ex=1y1(-x)THe(y —x) <1} ={y | lly — xllg, <1}

Points in E, are feasible!!!

(v —x)THy(y —x) = (v = x)TATD2A(y - x)
S (a (v = x))?
5i(x)?

i=1

(change of distance to i-th constraint going from x to y)?
(distance of x to i-th constraint)?

IA Il

In order to become infeasible when going from x to y one of the
terms in the sum would need to be larger than 1.




Dikin Ellipsoids
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Analytic Center

Xac 1= argmin,. cp. ¢p(x)

> Xac is solution to

<1
Vp(x)=> ——a;=0
o six)

» depends on the description of the polytope
> Xac exists and is unique iff P° is nonempty and bounded
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

» t = 0: analytic center

> t = co: optimum solution

x*(t) exists and is unique for all t > 0.
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Different Central Paths
y

BB
i = ;7
f{/ / > X
] /L
| A7
=T

10 Karmarkars Algorithm

Harald Racke

229




Central Path

Intuitive Idea:
Find point on central path for large value of t. Should be close to
optimum solution.

Questions:
> |s this really true? How large a t do we need?

» How do we find corresponding point x*(t) on central path?
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The Dual

primal-dual pair:

— max -blz
min ¢lx .
s.t. A'z+¢c=0
s.t. Ax<b
z=20

Assumptions

» primal and dual problems are strictly feasible;

» rank(A) = n.

| Note that the right LP in standard form ]
lis equal to max{-bTy | ATy =c,x =1
1 0}. The dual of this is min{cTx | —Ax > |

: —b} (variables x are unrestricted).

Force Field Interpretation

Point x*(t) on central path is solution to tc + V¢(x) =0
» We can view each constraint as generating a repelling force.
The combination of these forces is represented by V¢ (x).

> In addition there is a force tc pulling us towards the
optimum solution.
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How large should t be?

Point x*(t) on central path is solution to tc + V¢ (x) = 0.

This means
m 1
t x4 =0
C+§1 si(x*(t))al
or
m 1
+ >k t .:O th * t T e (R (1)
C Z z; (Ha; wi Zi () tsi(x*(t))

i=1

» z*(t) is strictly dual feasible: (ATz* + ¢ = 0; z* > 0)

» duality gap between x := x*(t) and z := z*(t) is
cIx+bTz=(b-Ax)Tz = %

» if gap is less than 1/29() we can snap to optimum point




How to find x* (1)

First idea:
» start somewhere in the polytope

» use iterative method (Newtons method) to minimize
fr(x) i=tcTx + p(x)
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Newton Method

Quadratic approximation of f;

felx +€) = fulx) + Vi) Te + 2eTHy ()€

Suppose this were exact:

felx +©) = i) + Vfi) e + 2eTHy (e

Then gradient is given by:

Vft(x +€) =Vfi(x) +Hp(x)-€
 Note that for the one-dimensional case 1
19(€) = )+ f/(x)e+ 3£ (x)€2, then |
1g'(e) = f'(x) + f" (x)e. I
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: Observe that Hy, (x) = H(x), where H(x) is the Hessian
:for the function ¢(x) (adding a linear term like tcTx
1 does not affect the Hessian).

1

Newton Method

1 Also Vfi(x) = tc + V(x).

We want to move to a point where this gradient is O:

Newton Step at x € P°

Axne = —Hp' (x)V fr (x)
—H () (tc + Ve (x)

—(ATD2A) Mtc + ATdy)

Newton Iteration:
X =X + AXnt

a

Measuring Progress of Newton Step

Newton decrement:

At(x) = [DxADXne|l

= llAxntll

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

At (x)? = V()T Axne

» Ar(x) =0iff x = x*(t)

» Ay(x) is measure of proximity of x to x*(t)




Convergence of Newtons Method

Theorem 2
If A;(x) < 1 then

> X, =X+ Axpy € P° (new point feasible)
> Ap(xy) < Ap(x)?

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

» Ar(x) = [[Axntllg, < 1; hence x. lies in the Dikin ellipsoid
around x.

Convergence of Newtons Method

bound on As(x™"):
we use D := D, = diag(dy) and D, := Dy+ = diag(dx+)

At(x™)? = IDy AAXR I
< |DLAAXI? + IDy AAX, + (I = D7 'D)DAAX |1
= |(I = D;'D)DAAXy ||

To see the last equality we use Pythagoras
lall® + lla + blI* = ||b||?

if al (a + b) = 0.

Convergence of Newtons Method
DAAxp = DA(x™ — x)
=D(b - Ax — (b — Ax™"))
=D(D7'T-D7')
= (I -D7;'D)1

al(a+b)
= Axi ATD. (D AAX, + (I - DI'D)DAAXp)
= Axid (ATD2AAX, — ATD? AAxn + ATD, DAAX )
= Axl (H, Axfy — HAxn + ATD. T — ATDT)
= A (= Ve (x) + Vfix) + Vp(xT) = Veb(x))
=0




Convergence of Newtons Method

bound on As(x7):
we use D := D, = diag(dy) and D, := Dy+ = diag(d+)

A (x )2 = ||D+AAx,Tt||2 If A;(x) is large we do not have a guarantee.
< IDyAAX§II? + IDyAAX S + (I = DY'D)DAAX|? Try to avoid this casell

= | (I - D;'D)DAAXy ||
= (I - D7'D)?1?
<0 -D'D)I|?

= |IDAAX|I*

= Ar(x)?

The second inequality follows from 3, v# < (3 v2)°
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Path-following Methods Short Step Barrier Method

simplifying assumptions:

Try to slowly travel along the central path. > a first central point x™(to) is given

» x*(t) is computed exactly in each iteration

Algorithm 1 PathFollowing

1: start at analytic center € is approximation we are aiming for

2: while solution not good enough do

3: make step to improve objective function start at t = tg, repeat until m/t < e

4 recenter to return to central path » compute x*(ut) using Newton starting from x* (1)

> L= put
where y=1+1/(2/m)




Short Step Barrier Method

gradient of f;+ at (x = x*(t))

Vfr+(x) = Vfi(x) + (u—1tc

—(u-1)ATD,1

This holds because 0 = V.f; (x) = tc + ATD.1.

The Newton decrement is

A+ (%) = Ve () THV f+ (%)

=(u-1)%1"B(BTB)"'BTT B=DIA
<(u-1°m
=1/4

This means we are in the range of quadratic convergence!!!

| Explanation for previous slide
1P = B(BTB)~1BT is a symmet-
| . .

, ric real-valued matrix; it has n
. . :Iinearly independent Eigenvec-
the number of Newton iterations per outer . tors. Since itis a projection ma-
. . . . . [ 2 _ ;

iteration is very small; in practise only 1 or 2: /x (°P° = P) it can only have
:Elgenvalues 0 and 1 (because

. . i the Eigenvalues of P2 are A?,
Number of outer iterations: ! where A; i Eigenvalue of P).

We need t; = pktg = m/e. This holds when ! The expression

Number of Iterations

_ log(m/(eto))
= T I T
log(u) : vouy

ives the largest Eigenvalue for
. Hence, ITPT <171 =m

S Q

We get a bound of oo ielan o e s e .

m
O(Mlog a)

We show how to get a starting point with to = 1/2L. Together
with € = 271 we get O(L./m) iterations.

EADS 11 10 Karmarkars Algorithm
Harald Ricke 247

| 1
1 We assume that the polytope (not just:

| the LP) is bounded. Then Av < 0 is not ]
: possible. !

Damped Newton Method

For x € P° and direction v # O define taTv is the change on the left
:hand side of the i-th constraint
a.Tv when moving in direction of v.
Ox (V) 1= max L Lf 0x(v) > 1 then for one coor-
t Si(X) :dinate this change is larger than
1 the slack in the constraint at po-
: sition x.
' By downscaling v we can en-

1
1 sure to stay in the polytope. ;
U

Observation:

x+aveP forxe{0,1/ox(v)}
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Damped Newton Method

Suppose that we move from x to x + «v. The linear estimate
says that f;(x) should change by V f; (x)T xv.

The following argument shows that f; is well behaved. For small
o the reduction of f;(x) is close to linear estimate.

filkx +av) — fi(x) =tcTov + p(x + av) — p(x)

P(x + o) = (x) = = > log(si(x + av)) + > log(si(x))
- > log(si(x + av) /si(x))

- > log(1 —af av/si(x))

) . T T o) e T
|5L(x+ow)—blfaixfaiow—sl(x)fal.(xv
o - O C U
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V)T aw :
= (tcT i ZiuiT/si(x))ow I
=tclTav + 3 qw; :

Note that |lw]| = [|[v|g ]
Define w; = al v/si(x) and 0 = max; w;. Then “--__Z_______C X
Sfi(x + av) = fi(x) = Vfi(x) o
=— Zi(cxwi +log(1 — aw;))
2.2
XoW?
<— > (ow;i+log(l —ow;)) + > 5 L
w;i>0 w;<0
2 2 2
w (xo) w;
< - Z 12<O(U+log(1—(x0)> —L
2 o
w;i>0 w;<0
For x| <1,x<0: oo :
2 B 4 ) B P
i x+log(1—x):—%—%—%—---z—%:—%;% |
L o o e e e e e e e e e e e e e e e e e e e D e e e e e e e e e e e o 1
:_Forlx\<l O<x<y :
X2 3 4 B 52 2 y2y2 I
D oxtlogl-x) = - - = (- - - ) :
I 2 2 3 4 2
| 25 (- T - - )= (v +log-») |

Damped Newton Method

< ,Z ((xa+log(17(x0))

= —EHUHIZLIX (cxa +log(1 — cxa))

Damped Newton Iteration:
In a damped Newton step we choose

Xy =X+ AXnt

1 + Ux(AXnt)

:This means that in the above expressions we choose x = ﬁ and v = Axnt. Note that :
it wouldn’t make sense to choose « larger than 1 as this would mean that our real target :
(x + Axnt) is inside the polytope but we overshoot and go further than this target. |
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Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

Ar(x) —log(1 + A¢(x))

Proof: The decrease in cost is

—aVfi)Tv+ %HUHHX(O(U +log(l — xo))

Choosing o = m and v = Axp gives
A(x)( o o
2 t _
1+02\t(x) 2 <1+U+log<1 1+0>>
A¢(x)
_ t0'2 (o ~log(1 +0))

:With v = Axnpe we have w2 = Vg, = A¢(x); further:
1 recall that 0 = |[w]|«; hence o < A¢(x). |

__________________________________

lThe first |nequal|ty follows since thel
funct|on x2 (x —log(1 +x)) is monoton- .
: ically decreasing. !

Damped Newton Method

> Ap(x) —log(1 + A¢(x))
> 0.09

for A¢(x) = 0.5

Centering Algorithm:

Input: precision ¢; starting point x
1. compute Axnt and A (x)
2. if Ay(x) < 6 return x
3. set x := X + xAxnt with

1
o = 1+0x(Axnt) =1/2
1 otw.

m EADS Il 10 Karmarkars Algorithm
Harald Racke 253




Centering

Lemma 3
The centering algorithm starting at xo reaches a point with
At(x) < 6 after

Sft(xo) —miny fi(y)
0.09

+ O(loglog(1/6))

iterations.

This can be very, very slow...
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = (A) + (b) + (c) (encoding
length) and A = 22L, Recall that a basis is feasible in the old LP
iff it is feasible in the new LP.
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Lemma [without proof]
The inverse of a matrix M can be represented with rational
numbers that have denominators z;; = det(M).

For two basis solutions xg, xj, the cost-difference cTxp — CTXB
can be represented by a rational number that has denominator
z = det(Ap) - det(Ap) - A.

This means that in the perturbed LP it is sufficient to decrease
the duality gap to 1/2%L (i.e., t ~ 2%L). This means the previous
analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the
objective value ¢”x is at most n2M 2L where M < L is the
encoding length of the largest entry in ¢.
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How to get close to analytic center?

Start at x. i This holds since the slack in every constraint

1at xo is at least A = 1/22L, and the gradient |
| is the vector of inverse slacks. !

Choose ¢ := -V (x).
xo = x*(1) is point on central path for ¢ and t = 1.

You can travel the central path in both directions. Go towards 0
until t ~ 1/22%L), This requires O (./mL) outer iterations.

Let x¢ denote this point.
Let x. denote the point that minimizes
t-clx +p(x)

(i.e., same value for t but different c, hence, different central
path).




How to get close to analytic center?
Clearly,

t-ETxe+ plxe) <t-ETxe+ Pplxe)
The different between f;(x¢) and fi(xc) is

teTxe + p(xe) —tcTxe — plxe)
<t(cTxs+ETxe —Txs —clxe)
< 4tn23L

For t = 1/290)) the last term becomes constant. Hence, using
damped Newton we can move from x; to x. quickly.

In total for this analysis we require @(,/mL) outer iterations for
the whole algorithm.

One iteration can be implemented in O (m3) time.
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