Gap Introducing Reduction

HAM TSP
Reduction from Hamiltonian cycle to TSP

» instance that has Hamiltonian cycle is mapped to TSP
instance with small cost

» otherwise it is mapped to instance with large cost
» = there is no 2" /n-approximation for TSP

PCP theorem: Approximation View

Theorem 2 (PCP Theorem A)

There exists € > 0 for which there is gap introducing reduction
between 3SAT and MAX3SAT.

3SAT MAX3SAT

PCP theorem: Proof System View

Definition 3 (NP)
A language L € NP if there exists a polynomial time,
deterministic verifier V (a Turing machine), s.t.

[x € L] completeness
There exists a proof string v, |v| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] soundness
For any proof string v, V(x, y) = “reject”.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 499/569

PCP theorem: Proof System View

Definition 3 (NP)
A language L € NP if there exists a polynomial time,
deterministic verifier V (a Turing machine), s.t.

[x € L] completeness
There exists a proof string v, |v| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] soundness
For any proof string v, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ¢ L does not make a
difference (why?).

‘m EADS Il 20 Hardness of Approximation
Harald Racke 499/569

Definition 4 (NP)
A language L € NP if there exists a polynomial time,
deterministic verifier V (a Turing machine), s.t.

[x € L] There exists a proof string y, |y| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] For any proof string v, V(x,y) = “reject’.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 500/569

Definition 4 (NP)
A language L € NP if there exists a polynomial time,
deterministic verifier V (a Turing machine), s.t.

[x € L] There exists a proof string y, |y| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] For any proof string v, V(x,y) = “reject’.

Note that requiring |y| = poly(|x]) for x ¢ L does not make a
difference (why?).

‘m EADS Il 20 Hardness of Approximation
Harald Racke 500/569

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access
to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle 1t7sp would allow M
to write a TSP-instance x on a special oracle tape and obtain the
answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query
complexity, i.e., how often the machine queries the oracle.

For a proof string v, 11, is an oracle that upon given an index i
returns the i-th character y; of y.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 501/569

Probabilistic Checkable Proofs

Definition 5 (PCP)
A language L € PCP; () s(n) (r(n),q(n)) if there exists a
polynomial time, non-adaptive, randomized verifier V, s.t.

[x € L] There exists a proof string , s.t. V'™ (x) = “ac-
cept” with proability > c(n).

[x ¢ L] For any proof string y, V™ (x) = “accept” with
probability < s(n).

The verifier uses at most @ (r(n)) random bits and makes at
most @(q(n)) oracle queries.

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1.
Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.
s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many
random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 503/569

Probabilistic Checkable Proofs

» P =PCP(0,0)

‘m EADS I 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is
deterministic algorithm

m EADS II 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is
deterministic algorithm

» PCP(logn,0) <P

m EADS II 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is
deterministic algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

‘m EADS Il 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is
deterministic algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) < P

‘m EADS Il 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is
deterministic algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) < P
we can simulate short proofs in polynomial time

‘m EADS Il 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

v

P = PCP(0,0)

verifier without randomness and proof access is

deterministic algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) < P

we can simulate short proofs in polynomial time

» PCP(poly(n),0) = coRP £ P

‘m EADS Il 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

v

P = PCP(0,0)
verifier without randomness and proof access is
deterministic algorithm
» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time
» PCP(0,logn) < P
we can simulate short proofs in polynomial time
» PCP(poly(n),0) = coRP Zp
by definition; coRP is randomized polytime with one sided
error (positive probability of accepting NO-instance)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

v

P = PCP(0,0)
verifier without randomness and proof access is
deterministic algorithm
» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time
» PCP(0,logn) < P
we can simulate short proofs in polynomial time
» PCP(poly(n),0) = coRP Zp
by definition; coRP is randomized polytime with one sided
error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

‘m EADS Il 20 Hardness of Approximation
Harald Racke 504/569

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

‘m EADS I 20 Hardness of Approximation
Harald Racke 505/569

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

» PCP(log n,poly(n)) < NP
NP-verifier can simulate O (logn) random bits

‘m EADS Il 20 Hardness of Approximation
Harald Racke 505/569

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

» PCP(log n,poly(n)) < NP
NP-verifier can simulate O (logn) random bits

?1
» PCP(poly(n),0) = coRP < NP

‘m EADS Il 20 Hardness of Approximation
Harald Racke 505/569

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

» PCP(log n,poly(n)) < NP
NP-verifier can simulate O (logn) random bits
» PCP(poly(n),0) = cORP & NP

» NP < PCP(logn,1)
hard part of the PCP-theorem

‘m EADS Il 20 Hardness of Approximation
Harald Racke 505/569

PCP theorem: Proof System View

Theorem 6 (PCP Theorem B)
NP = PCP(logn, 1)

m EADS I 20 Hardness of Approximation
Harald Racke 506/569

Probabilistic Proof for Graph Nonlsomorphism

GNl is the language of pairs of non-isomorphic graphs

m EADS I 20 Hardness of Approximation
Harald Racke 507/569

Probabilistic Proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G, G1) (two graphs with n-nodes)

‘m EADS II 20 Hardness of Approximation
Harald Racke 507/569

Probabilistic Proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs
Verifier gets input (G, G1) (two graphs with n-nodes)

It expects a proof of the following form:
» For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills
Go=H = P[H]=0
Gi=H = P[H]=1
Go,G1 # H = P[H] = arbitrary

‘m EADS Il 20 Hardness of Approximation
Harald Racke 507/569

Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

» take graph Gj, and apply a random permutation to obtain a
labeled graph H

» check whether P[H] = b

‘m EADS II 20 Hardness of Approximation
Harald Racke 508/569

Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

» take graph Gj, and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =b

If Go # G1 then by using the obvious proof the verifier will
always accept.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 508/569

Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

» take graph Gj, and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =b

If Go # G1 then by using the obvious proof the verifier will
always accept.

If Go = G1 a proof only accepts with probability 1/2.
» suppose 1T(Gg) = G

> if we accept for b = 1 and permutation 13,4 We reject for
b = 0 and permutation Trang o T

‘m EADS Il 20 Hardness of Approximation
Harald Racke 508/569

Version B = Version A

» For 3SAT there exists a verifier that uses clogn random
bits, reads g = O(1) bits from the proof, has completeness
1 and soundness 1/2.

‘m EADS II 20 Hardness of Approximation
Harald Racke 509/569

Version B = Version A

» For 3SAT there exists a verifier that uses clogn random
bits, reads g = O(1) bits from the proof, has completeness
1 and soundness 1/2.

» fix x and r:

‘m EADS Il 20 Hardness of Approximation
Harald Racke 509/569

Version B = Version A

» For 3SAT there exists a verifier that uses clogn random
bits, reads g = O(1) bits from the proof, has completeness
1 and soundness 1/2.

» fix x and r:

input proof bits
—_—
X, v 7Tj1,...,1Tj

l

computation

fx,r(ﬂ'jl, e ,7qu)
P
reject accept

‘m EADS Il 20 Hardness of Approximation
Harald Racke 509/569

Version B = Version A

» transform Boolean formula fx , into 3SAT formula Cx
(constant size, variables are proof bits)

m EADS I 20 Hardness of Approximation
Harald Racke 510/569

Version B = Version A
» transform Boolean formula fx , into 3SAT formula Cx

(constant size, variables are proof bits)
» consider 3SAT formula Cx = \, Cxr

‘m EADS I 20 Hardness of Approximation
Harald Racke 510/569

Version B = Version A
» transform Boolean formula fx , into 3SAT formula Cx
(constant size, variables are proof bits)

» consider 3SAT formula Cx = \, Cxr

[x € L1 There exists proof string y, s.t. all formulas Cx
evaluate to 1. Hence, all clauses in Cy satisfied.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 510/569

Version B = Version A

» transform Boolean formula fx , into 3SAT formula Cx
(constant size, variables are proof bits)

» consider 3SAT formula Cx = \, Cxr

[x € L1 There exists proof string y, s.t. all formulas Cx
evaluate to 1. Hence, all clauses in Cy satisfied.

[x ¢ L] For any proof string y, at most 50% of formulas
Cxr evaluate to 1. Since each contains only a
constant number of clauses, a constant fraction
of clauses in Cy are not satisfied.

‘m EADS Il 20 Hardness of Approximation
Harald Racke

510/569

Version B = Version A

» transform Boolean formula fx , into 3SAT formula Cx

(constant size, variables are proof bits)
» consider 3SAT formula Cx = \, Cxr

[x € L]

[x ¢ L]

There exists proof string , s.t. all formulas Cx
evaluate to 1. Hence, all clauses in Cy satisfied.

For any proof string v, at most 50% of formulas
Cxr evaluate to 1. Since each contains only a
constant number of clauses, a constant fraction
of clauses in Cy are not satisfied.

» this means we have gap introducing reduction

T

EADS Il
Harald Racke

20 Hardness of Approximation

510/569

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).

given L € NP we build a PCP-verifier for L

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

» 3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

» 3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L

» map I, to MAX3SAT instance Cy (PCP Thm. Version A)

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

» 3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L

» map I, to MAX3SAT instance Cy (PCP Thm. Version A)

> interpret proof as assignment to variables in Cy

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

» 3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L

» map I, to MAX3SAT instance Cy (PCP Thm. Version A)
> interpret proof as assignment to variables in Cy

» choose random clause X from Cy

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).
given L € NP we build a PCP-verifier for L

Verifier:
» 3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L
» map I, to MAX3SAT instance Cy (PCP Thm. Version A)
> interpret proof as assignment to variables in Cy
» choose random clause X from Cy

» query variable assignment o for X;

Version A = Version B

We show: Version A = NP < PCP; ;_((logn,1).

given L € NP we build a PCP-verifier for L

Verifier:

>

3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L

map I, to MAX3SAT instance Cy (PCP Thm. Version A)
interpret proof as assignment to variables in Cy
choose random clause X from Cy

query variable assignment o for X;

accept if X (o) = true otw. reject

Version A = Version B

[x € L] There exists proof string vy, s.t. all clauses in Cy
evaluate to 1. In this case the verifier returns 1.

[x ¢ L] For any proof string », at most a (1 — €)-fraction
of clauses in Cy evaluate to 1. The verifier will
reject with probability at least €.

To show Theorem B we only need to run this verifier a constant
number of times to push rejection probability above 1/2.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 512/569

NP < PCP(poly(n), 1)

PCP(poly(n), 1) means we have a potentially exponentially long
proof but we only read a constant number of bits from it.

‘m EADS I 20 Hardness of Approximation
Harald Racke 513/569

NP < PCP(poly(n), 1)

PCP(poly(n), 1) means we have a potentially exponentially long
proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment
(say n bits)) by a code whose code-words have 2" bits.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 513/569

NP < PCP(poly(n), 1)

PCP(poly(n), 1) means we have a potentially exponentially long
proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment
(say n bits)) by a code whose code-words have 2" bits.

A wrong proof is either

» a code-word whose pre-image does not correspond to a
satisfying assignment

» or, a sequence of bits that does not correspond to a
code-word

We can detect both cases by querying a few positions.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 513/569

The Code

u € {0,1}" (satisfying assignment)

Walsh-Hadamard Code:
WH,, : {0,1}" — {0,1},x — xTu (over GF(2))

The code-word for u is WH,,. We identify this function by a
bit-vector of length 2".

‘m EADS Il 20 Hardness of Approximation
Harald Racke 514/569

The Code

Lemma 7
If u + u’ then WH,, and WH,, differ in at least 2"~ bits.

m EADS I 20 Hardness of Approximation
Harald Racke 515/569

The Code

Lemma 7
If u + u’ then WH,, and WH,, differ in at least 2"~ bits.

Proof:
Suppose that u — 1" + 0. Then

WH,, (x) = WHy (x) <= (u—u)Tx =0

This holds for 2"~1 different vectors x.

‘m EADS I 20 Hardness of Approximation
Harald Racke 515/569

The Code

Suppose we are given access to a function f: {0,1}" — {0, 1}
and want to check whether it is a codeword.

m EADS I 20 Hardness of Approximation
Harald Racke 516/569

The Code

Suppose we are given access to a function f: {0,1}" — {0, 1}
and want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions
{0,1}" to {0, 1} we can check

fix+y)=fx)+f(»)

for all 22" pairs x, . But that’s not very efficient.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 516/569

NP < PCP(poly(n), 1)

Can we just check a constant number of positions?

m EADS I 20 Hardness of Approximation
Harald Racke 517/569

NP < PCP(poly(n), 1)

Definition 8
Let p € [0,1]. We say that f,g:{0,1}" — {0,1} are p-close if

Xeg)fl}n[f(x) =gx)]=p .

m EADS I 20 Hardness of Approximation
Harald Racke 518/569

NP < PCP(poly(n), 1)

Definition 8
Let p € [0,1]. We say that f,g:{0,1}" — {0,1} are p-close if

Xe{lz{”n[f(x) =g(x)]=p .

Theorem 9 (proof deferred)
Let f:{0,1}" — {0,1} with

1
. [fe) +f0) =fix+)]=p> 5

Then there is a linear function f such that f and f are p-close.

‘m EADS I 20 Hardness of Approximation
Harald Racke

518/569

NP < PCP(poly(n), 1)

We need O(1/9) trials to be sure that f is (1 — §)-close to a
linear function with (arbitrary) constant probability.

‘m EADS I 20 Hardness of Approximation
Harald Racke 519/569

NP < PCP(poly(n), 1)

Suppose for § < 1/4 f is (1 — &)-close to some linear function f.

m EADS I 20 Hardness of Approximation
Harald Racke 520/569

NP < PCP(poly(n), 1)

Suppose for § < 1/4 f is (1 — &)-close to some linear function f.

£ is uniquely defined by f, since linear functions differ on at
least half their inputs.

‘m EADS I 20 Hardness of Approximation
Harald Racke 520/569

NP < PCP(poly(n), 1)

Suppose for § < 1/4 f is (1 — &)-close to some linear function f.

£ is uniquely defined by f, since linear functions differ on at
least half their inputs.

Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

‘m EADS Il 20 Hardness of Approximation
Harald Racke 520/569

NP < PCP(poly(n), 1)

Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

1.

> W N

Choose x’ € {0,1}" u.a.r.

Set x" :=x + x'.

Let v' = f(x') and v = f(x").
Output y' + y".

NP < PCP(poly(n), 1)

Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

1. Choose x’ € {0,1}" u.a.r.

Set x" :=x + x'.

Let v' = f(x') and v = f(x").
Output y' + y".

> W N

x" and x'" are uniformly distributed (albeit dependent). With
probability at least 1 — 26 we have f(x’) = f(x") and
f(x//) :f(x”).

NP < PCP(poly(n), 1)

Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

1. Choose x’ € {0,1}" u.a.r.

Set x" :=x + x'.

Let v' = f(x') and v = f(x").
Output y' + y".

> W N

x" and x'" are uniformly distributed (albeit dependent). With
probability at least 1 — 26 we have f(x’) = f(x") and
f(x//) _ f(x//).

Then the above routine returns f(x).

This technique is known as local decoding of the
Walsh-Hadamard code.

NP < PCP(poly(n), 1)

We show that QUADEQ € PCP(poly(n), 1). The theorem follows
since any PCP-class is closed under polynomial time reductions.

QUADEQ
Given a system of quadratic equations over GF(2). Is there a
solution?
.
‘m EADS Il 20 Hardness of Approximation
Harald Racke

522/569

QUADEQ is NP-complete

» given 3SAT instance C represent it as Boolean circuit
eg.C=(x1VXx2VX3)A(X3VXaVX5)A(XeV X7V Xg)

X1 X2 X3 X4 X5 X6 X7 X8

‘m EADS Il 20 Hardness of Approximation
Harald Racke 523/569

QUADEQ is NP-complete

» given 3SAT instance C represent it as Boolean circuit
eg.C=(x1VXx2VX3)A(X3VXaVX5)A(XeV X7V Xg)

» add variable for every wire

out
g
d f
e
a b h c
X1 X2 X3 X4 X5 X6 X7 X8

‘m EADS Il 20 Hardness of Approximation
Harald Racke 523/569

QUADEQ is NP-complete

» given 3SAT instance C represent it as Boolean circuit
eg.C=(x1VXx2VX3)A(X3VXaVX5)A(XeV X7V Xg)

» add variable for every wire

out
» add constraint for every gate
OR: i1+ip+i1-i2=0 09
AND: iy -i2 =0
- 2 de-g
NEG: i=1-o0 ,
| [tz
4 f
e
a b h c
X1 X2 X3 X4 X5 X6 X7 X8

‘m EADS Il 20 Hardness of Approximation
Harald Racke 523/569

QUADEQ is NP-complete

» given 3SAT instance C represent it as Boolean circuit
eg.C=(x1VXx2VX3)A(X3VXaVX5)A(XeV X7V Xg)

» add variable for every wire

out
» add constraint for every gate
OR: i1+ip+i1-i2=0 09
AND: ij - i» =
NEG: i=1-o0 ,
. d e
» add constraint out = 1 - f
a b h c
X1 X2 X3 X4 X5 X6 X7 X8

‘m EADS Il 20 Hardness of Approximation
Harald Racke 523/569

QUADEQ is NP-complete

» given 3SAT instance C represent it as Boolean circuit
eg.C=(x1VXx2VX3)A(X3VXaVX5)A(XeV X7V Xg)

» add variable for every wire

out
» add constraint for every gate
OR: i1+ip+i1-i2=0 09
AND:1'1-12=0 doe=g
NEG: i=1-o0 ,
. d | [tz
» add constraint out = 1 - f
» system is feasible iff
C is satisfiable a » TTh c
X1 X2 X3 X4 X5 X6 X7 Xg

‘m EADS Il 20 Hardness of Approximation
Harald Racke 523/569

NP < PCP(poly(n), 1)

We encode an instance of QUADEQ by a matrix A that has n?
columns; one for every pair i, j; and a right hand side vector b.

For an n-dimensional vector x we use x ® x to denote the
n?-dimensional vector whose i, j-th entry is XiXj.

Then we are asked whether
Alxex)=D>b

has a solution.

NP < PCP(poly(n), 1)

Let A, b be an instance of QUADEQ. Let u be a satisfying
assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of
u and u ® u. The verifier will accept such a proof with
probability 1.

We have to make sure that we reject proofs that do not
correspond to codewords for vectors of the form u, and u ® u.

We also have to reject proofs that correspond to codewords for
vectors of the form z, and z ® z, where z is not a satisfying
assignment.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 525/569

NP < PCP(poly(n), 1)

Step 1. Linearity Test.
The proof contains 2™ + 2"* bits. This is interpreted as a pair of
functions f:{0,1}" — {0,1} and g : {0, 1}”Z - {0,1}.

NP < PCP(poly(n), 1)

Step 1. Linearity Test.
The proof contains 2™ + 2"* bits. This is interpreted as a pair of
functions f:{0,1}" — {0,1} and g : {0, 1}”2 - {0,1}.

We do a 0.999-linearity test for both functions (requires a
constant number of queries).

NP < PCP(poly(n), 1)

Step 1. Linearity Test.
The proof contains 2™ + 2"* bits. This is intgrpreted as a pair of
functions f:{0,1}" — {0,1} and g : {0, 1}”2 - {0,1}.

We do a 0.999-linearity test for both functions (requires a
constant number of queries).

We also assume that for the remaining constant number of
accesses WH-decoding succeeds and we recover f(x).

NP < PCP(poly(n), 1)

Step 1. Linearity Test.
The proof contains 2™ + 2"* bits. This is intgrpreted as a pair of
functions f:{0,1}" — {0,1} and g : {0, 1}”2 - {0,1}.

We do a 0.999-linearity test for both functions (requires a
constant number of queries).

We also assume that for the remaining constant number of
accesses WH-decoding succeeds and we recover f(x).

Hence, our proof will only ever see f. To simplify notation we
use f for f, in the following (similar for g, g).

NP < PCP(poly(n), 1)

m EADS Il 20 Hardness of Approximation
Harald Racke 527/569

NP < PCP(poly(n), 1)

Step 2. Verify that g encodes u ® u where u is string
encoded by f.
fr)=uTr and g(z) = wTz since f, g are linear.

» choose 7,7’ independently, u.a.r. from {0,1}"
> if f(r)f(r') =g(rer’) reject
> repeat 3 times

‘m EADS Il 20 Hardness of Approximation
Harald Racke 528/569

NP < PCP(poly(n), 1)

A correct proof survives the test

fr) - far")

m EADS I 20 Hardness of Approximation
Harald Racke 529/569

NP < PCP(poly(n), 1)

A correct proof survives the test

for)y - fa) =ulr-ulv’

m EADS I 20 Hardness of Approximation
Harald Racke 529/569

NP < PCP(poly(n), 1)

A correct proof survives the test

for)y - fa) =ulr-ulv’

- (Sun) - (Swr)

m EADS I 20 Hardness of Approximation
Harald Racke 529/569

NP < PCP(poly(n), 1)

A correct proof survives the test

f(r) ' f(’l’,) = uT»,/- . ’M,T’}",
- (ZuiTi> : (Zuﬂf]’)
' J

= z uiujnrj’.
ij

m EADS I 20 Hardness of Approximation
Harald Racke 529/569

NP < PCP(poly(n), 1)

A correct proof survives the test

fo) - f@) =ulr-uly’
= (Zwimi) - (X))
i j
= zuiujnrj’.
ij
—ueowl(rer)

m EADS I 20 Hardness of Approximation
Harald Racke 529/569

NP < PCP(poly(n), 1)

A correct proof survives the test

fo) - f@) =ulr-uly’
= (Zwimi) - (X))
i j
= zuiujnrj’.
ij
—ueowl(rer)

=g(rer’)

m EADS I 20 Hardness of Approximation
Harald Racke 529/569

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)=wl@rer)

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)=wlrer) = wjrr;
ij

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)=wlrer)= Zwijrirf =rTwy’
ij

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)=wlrer)= Zwijrirf =rTwy’
ij

S fr)

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)=wlrer)= Zwijrirf =rTwy’
ij

fF fa')y =ulr-ulr’

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)=wlrer)= Zwijrirf =rTwy’
ij

FO Loy =ulr-ulv’ =vTur’

NP < PCP(poly(n), 1)

Suppose that the proof is not correct and w + u ® u.

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u @ u).

grer)=wlrer)= Zwiﬂﬂ’f =rTwy’
ij

FOOFE) =uTr -uTr’ =+Tur’

If U = W then Wv’ = Ur’ with probability at least 1/2. Then
rITWr’ = vTUr’ with probability at least 1/4.

NP < PCP(poly(n), 1)
Step 3. Verify that f encodes satisfying assignment.
We need to check
Ar(ueu) = by

where Ay is the k-th row of the constraint matrix. But the left
hand side is just g(A]).

NP < PCP(poly(n), 1)
Step 3. Verify that f encodes satisfying assignment.
We need to check
Ar(ueu) = by
where Ay is the k-th row of the constraint matrix. But the left

hand side is just g(A]).

We can handle this by a single query but checking all constraints
would take O (m) steps.

NP < PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check
Ar(ueu) = by

where Ay is the k-th row of the constraint matrix. But the left
hand side is just g(A]).

We can handle this by a single query but checking all constraints
would take O (m) steps.

We compute ¥ A, where » € {0,1}™. If u is not a satisfying
assignment then with probability 1/2 the vector v will hit an odd
number of violated constraints.

NP < PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check
Ar(ueu) = by

where Ay is the k-th row of the constraint matrix. But the left
hand side is just g(A]).

We can handle this by a single query but checking all constraints
would take O (m) steps.

We compute ¥ A, where » € {0,1}™. If u is not a satisfying
assignment then with probability 1/2 the vector v will hit an odd
number of violated constraints.

In this case ¥TA(u ® u) # v by. The left hand side is equal to
g(ATr).

NP < PCP(poly(n), 1)

We used the following theorem for the linearity test:

Theorem 9
Let f:{0,1}" — {0,1} with

e [f0+f) = Fix]zp>

x,ye{0,1}n 2

Then there is a linear function f such that f and f are p-close.

‘m EADS II 20 Hardness of Approximation
Harald Racke 532/569

NP < PCP(poly(n), 1)

Fourier Transform over GF(2)

In the following we use {—1,1} instead of {0,1}. We map
b e {0,1} to (—1)b.

This turns summation into multiplication.

The set of function f: {—1,1}" — R form a 2"-dimensional
Hilbert space.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 533/569

NP < PCP(poly(n), 1)

Hilbert space
> addition (f + g)(x) = f(x) + g(x)
» scalar multiplication (& f)(x) = o f(x)

» inner product (f,g) = Exc{-1,11n[f (x)g(x)]
(bilinear, {(f,f)=0,and (f,f)=0= f =0)

» completeness: any sequence xj of vectors for which

N

L—Zxk

k=1

S Il < oo fulfills =0

k=1

for some vector L.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 534/569

NP < PCP(poly(n), 1)

standard basis

1 x=y
0 otw.

ex(y) = {

Then, f(x) = >; xje;(x) where xx = f(x), this means the
functions e; form a basis. This basis is orthonormal.

‘m EADS I 20 Hardness of Approximation
Harald Racke 535/569

NP < PCP(poly(n), 1)

fourier basis
For @ < [n] define

Xa(x) = l_[Xi

iex

m EADS I 20 Hardness of Approximation
Harald Racke 536/569

NP < PCP(poly(n), 1)

fourier basis
For @ < [n] define
Xa(x) = l_[Xi
iex

Note that

(Xotr XB)

m EADS I 20 Hardness of Approximation
Harald Racke 536/569

NP < PCP(poly(n), 1)

fourier basis
For @ < [n] define
Xa(x) = 1_[Xi
iex

Note that

(Xo» Xg) = Ex [XO((X)XB(X)]

m EADS I 20 Hardness of Approximation
Harald Racke 536/569

NP < PCP(poly(n), 1)

fourier basis
For @ < [n] define
Xa(x) = 1_[Xi
iex

Note that

(Xo» Xg) = Ex [XO((X)XB(X)] = Ex [XO(AB(X):I

m EADS I 20 Hardness of Approximation
Harald Racke 536/569

NP < PCP(poly(n), 1)

fourier basis

For @ < [n] define

Xa(x) = 1_[Xi
iex
Note that
1 =
(Xos Xp) = Ex[XO((X)XB(X)] = Ex[thAﬁ(x)] = { 0 E,th_ﬁ

m EADS I 20 Hardness of Approximation
Harald Racke 536/569

NP < PCP(poly(n), 1)

fourier basis

For @ < [n] define

Xa(x) = 1_[Xi
iex
Note that
1 =
(Xos Xp) = Ex[XO((X)XB(X)] = Ex[thAB(X)] = { 0 :tw_ﬁ

This means the x4's also define an orthonormal basis. (since we
have 2" orthonormal vectors...)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 536/569

NP < PCP(poly(n), 1)

A function x, multiplies a set of x;’s. Back in the GF(2)-world
this means summing a set of z;’s where x; = (—1)%i.

This means the function x correspond to linear functions in the
GF(2) world.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 537/569

NP < PCP(poly(n), 1)
We can write any function f: {-1,1}" — R as

f= thxch
(6.4
We call f}x the «!" Fourier coefficient.

Lemma 10

1. {(f,9) = 2 fad«
2. (fsf) = szfoz(

Note that for Boolean functions f: {—1,1}" — {—1,1},

(f,f)=1

‘m EADS I 20 Hardness of Approximation
Harald Racke 538/569

Linearity Test

in GF(2):
We want to show that if Pry [f(x) + f(») = f(x +)] is large
than f has a large agreement with a linear function.

‘m EADS II 20 Hardness of Approximation
Harald Racke 539/569

Linearity Test

in GF(2):
We want to show that if Pry [f(x) + f(») = f(x +)] is large
than f has a large agreement with a linear function.

in Hilbert space: (we will prove)
Suppose f: {+1}"™ — {—1,1} fulfills

PLIfCOSO) = flxe)] =g +e .

Then there is some x < [n], s.t. f(x > 2¢€.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 539/569

Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

‘m EADS I 20 Hardness of Approximation
Harald Racke 540/569

Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < f«

‘m EADS I 20 Hardness of Approximation
Harald Racke 540/569

Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

ZESf(x =(f, Xa)

‘m EADS I 20 Hardness of Approximation
Harald Racke 540/569

Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < fa = {(f,X«) = agree — disagree

‘m EADS Il 20 Hardness of Approximation
Harald Racke 540/569

Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < fa = (f,X«) = agree — disagree = 2agree — 1

‘m EADS Il 20 Hardness of Approximation
Harald Racke 540/569

Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f,g agree minus the fraction of inputs on which they disagree.

2€ < f(x = (f,X«) = agree — disagree = 2agree — 1

o . 1
This gives that the agreement between f and x is at least 5 +€.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 540/569

Linearity Test

Prifxen) = ff O] = 3 +e

means that the fraction of inputs x,y on which f(x o y) and
f(x)f(y) agree is at least 1/2 + €.

This gives

Exy[f(xoy)f(x)f(y)] =agreement — disagreement
= 2agreement — 1

> 2€

‘m EADS I 20 Hardness of Approximation
Harald Racke 541/569

2€ < Ex,y [f(x 0 y)f(x)f(y)]

m EADS Il 20 Hardness of Approximation
Harald Racke 542/569

2€ < Ex,y [f(x 0 y)f(x)f(y)]

=Ex,y[<z(xfo<x°<(x°y)) (2 foxp0) (zyfyXy(y)>:|

‘m EADS Il 20 Hardness of Approximation
Harald Racke 542/569

2€ < Exy| f(xo y)f(x)f(y)]

= Exy _<z(xﬁxX¢x(x o)) - (g fexp(x)) - <zyfy><y(3’)>]

= Exy Zo(“&yfafoyXa(X)Xa(y)XB(X)Xy(J’)]

m EADS Il 20 Hardness of Approximation
Harald Racke 542/569

2€ < Exy| f(xo y)f(x)f(y)]

= Exy _<zaﬁxX¢x(x o)) - (g fexp(x)) - <zyfy><y(3’)>]

= Exy ZO(’B,yfafBJEyXa(X)Xa(y)XB(X)Xy(J’)]

- Za,ﬁ,y folpfy - Ex [Xo((X)XB(X)] Ey[xa(y)xy(y)]

m EADS I 20 Hardness of Approximation
Harald Racke 542/569

2€ < Exy| f(xo y)f(x)f(y)]

= Exy _<z(xf¢xX¢x(x o)) - (g fexp(x)) - <zyfy><y(3’)>]

= Exy ZO(’B,yfafochx(X)Xa()’)Xﬂ(X)Xy(y)]

- Za,ﬁ,y fofpfy - Ex [Xo((X)XB(X)] Ey[xa(y)xy(y)]
=/

m EADS I 20 Hardness of Approximation
Harald Racke 542/569

2€ < Exy| f(xo y)f(x)f(y)]

= Exy _<Z(xf¢xXo((x o)) - (X, fexsx)) - (nyyXy(J’)>]

=Ex,y za,B,y fafﬁfyXa(X)Xa(y)Xﬂ(X)Xy(y)]

- Za,ﬁ,y fofpfy - Ex [Xo((X)XB(X)] Ey[xo((y)xy(y)]
=/

Sm(f(lea : zfg =mo<'(inO(
«

m EADS I 20 Hardness of Approximation
Harald Racke 542/569

Approximation Preserving Reductions

AP-reduction
» x el = f(x,v) el
SOL; (x) #= 0 = SOL1 (f(x,7)) = 0
y € SOL2(f(x,7)) = g(x,y,r) € SOL; (x)

v

v

v

f,g are polynomial time computable

v

Ro(f(x,7),y) <7 = Ri(x,g(x,y,7)) <1+x(r—1)

m EADS I 20 Hardness of Approximation
Harald Racke 543/569

Label Cover

Input:
» bipartite graph G = (V1, V>, E)
> label sets Ly, L»

» for every edge (u,v) € E arelation Ry, < L1 X Ly that
describe assignments that make the edge happy.

» maximize number of happy edges

Ly = {m,m0m

Ly = {0,0,0,0,0}

Label Cover

» an instance of label cover is (dy, d>)-regular if every vertex
in L1 has degree d; and every vertex in Ly has degree d».

> if every vertex has the same degree d the instance is called
d-regular

Minimization version:

» assign a set Ly < L; of labels to every node x € L; and a
set L, < L, to every node y € Lo

» make sure that for every edge (x,y) thereis £, € L, and
{y €Ly st (Ix,¥y) €Rxy

» minimize > ¢y, [Lx| + >y cp, |Ly]| (total labels used)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 545/569

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

corresponding graph:

|x1 V)_C2VX3| |x4vx2 V)_C3| |)-61sz V X4

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

corresponding graph:

|x1 V)_C2VX'3| |x4vx2 V)_C3| |)-61Vx2 V X4

label sets: L1 = {T,F}3,L> = {T,F} (T'=true, F=false)

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

corresponding graph:

|x1 V)_C2VX'3| |x4vx2 V)_C3| |)-61Vx2 V X4

label sets: L1 = {T,F}3,L> = {T,F} (T'=true, F=false)

relation: Rc x, = {((us, uj, ug), u;)}, where the clause C is over
variables x;, xj, x, and assignment (u;, uj, uy) satisfies C

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

corresponding graph:

|x1 V)_C2VX3| |x4vx2 V)_C3| |)-61sz V X4

label sets: Ly = {T,F}3,L, = {T,F} (T=true, F=false)
relation: Rc x, = {((us, uj, ug), u;)}, where the clause C is over
variables x;, xj, x, and assignment (u;, uj, uy) satisfies C

R =1{((F,F,F),F),((F,T,F),F),((F,F,T),T), (F,T,T),T),
«r,1,7), 1), (T, T,F),F), (T,F,F), F)}

MAX E3SAT via Label Cover

Lemma 11
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

m EADS I 20 Hardness of Approximation
Harald Racke 547/569

MAX E3SAT via Label Cover

Lemma 11
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for Vo use the setting of the assignment that satisfies k
clauses

‘m EADS Il 20 Hardness of Approximation
Harald Racke 547/569

MAX E3SAT via Label Cover

Lemma 11
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for Vo use the setting of the assignment that satisfies k
clauses

» for satisfied clauses in V] use the corresponding
assignment to the clause-variables (gives 3k happy edges)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 547/569

MAX E3SAT via Label Cover

Lemma 11
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for Vo use the setting of the assignment that satisfies k
clauses

» for satisfied clauses in V] use the corresponding
assignment to the clause-variables (gives 3k happy edges)

» for unsatisfied clauses flip assignment of one of the
variables; this makes one incident edge unhappy (gives
2(m — k) happy edges)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 547/569

MAX E3SAT via Label Cover

Lemma 12
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

m EADS II 20 Hardness of Approximation
Harald Racke 548/569

MAX E3SAT via Label Cover

Lemma 12
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

Proof:
> the labeling of nodes in V, gives an assignment

‘m EADS Il 20 Hardness of Approximation
Harald Racke 548/569

MAX E3SAT via Label Cover

Lemma 12
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

Proof:
> the labeling of nodes in V, gives an assignment

» every unsatisfied clause in this assignment cannot be
assigned a label that satisfies all 3 incident edges

‘m EADS Il 20 Hardness of Approximation
Harald Racke 548/569

MAX E3SAT via Label Cover

Lemma 12
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

Proof:
> the labeling of nodes in V, gives an assignment

» every unsatisfied clause in this assignment cannot be
assigned a label that satisfies all 3 incident edges

» hence at most 3m — (m — k) = 2m + k edges are happy

‘m EADS Il 20 Hardness of Approximation
Harald Racke 548/569

Hardness for Label Cover

We cannot distinguish between the following two cases
> all 3m edges can be made happy

» at most 2m + (1 — €)m = (3 — €)m out of the 3m edges can
be made happy

‘m EADS Il 20 Hardness of Approximation
Harald Racke 549/569

Hardness for Label Cover

We cannot distinguish between the following two cases
> all 3m edges can be made happy

» at most 2m + (1 — €)m = (3 — €)m out of the 3m edges can
be made happy

Hence, we cannot obtain an approximation constant « > 3%6

‘m EADS Il 20 Hardness of Approximation
Harald Racke 549/569

(3, 5)-regular instances

Theorem 13
There is a constant p s.t. MAXE3SAT is hard to approximate with

a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 550/569

(3, 5)-regular instances

Theorem 13

There is a constant p s.t. MAXE3SAT is hard to approximate with
a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.

Then our reduction has the following properties:
> the resulting Label Cover instance is (3, 5)-regular
» it is hard to approximate for a constant & < 1

» given a label £; for x there is at most one label £, for v
that makes edge (x, y) happy (uniqueness property)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 550/569

(3, 5)-regular instances

The previous theorem can be obtained with a series of
gap-preserving reductions:

» MAX3SAT < MAX3SAT(< 29)

» MAX3SAT(< 29) < MAX3SAT(<5)
» MAX3SAT(< 5) < MAX3SAT(=5)
» MAX3SAT(=5) < MAXE3SAT(=5)

Here MAX3SAT(< 29) is the variant of MAX3SAT in which a

variable appears in at most 29 clauses. Similar for the other
problems.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 551/569

Regular instances

Theorem 14
There is a constant x < 1 such if there is an x-approximation
algorithm for Label Cover on 15-regular instances than P=NP.

Given a label 1 for x € V; there is at most one label £, for y
that makes (x, y) happy. (uniqueness property)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 552/569

Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance
probability of a wrong proof (or as here: a pair of wrong proofs)
one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a
single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several
rounds in parallel and hope that the acceptance probability of
wrong proofs goes down.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 553/569

Parallel Repetition

Given Label Cover instance I with G = (V1, Vo, E), label sets L
and L, we construct a new instance I’:

» Vi =VE=Vix- o xV;

> Vi=VE=Vax - x W

» L =LF=L; x---xIL

» Lhy=L5k=Lox. - xL

» EE=Ef=Ex..--XE
An edge ((x1,...,xx), (V1,...,Yk)) whose end-points are
labelled by (¢5,...,¢%) and (£7,...,07) is happy if
(0¥, 47) € Ry, , for all i.

‘m EADS Il 20 Hardness of Approximation
Harald Racke

554/569

Parallel Repetition

m EADS I 20 Hardness of Approximation
Harald Racke 555/569

Parallel Repetition

If I is regular than also I'.

m EADS II 20 Hardness of Approximation
Harald Racke 555/569

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?

» Suppose we have labelling 1, ¢> that satisfies just an
«-fraction of edges in I.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 555/569

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
» Suppose we have labelling 1, ¢> that satisfies just an
«-fraction of edges in I.
» We transfer this labelling to instance I":
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,..., vk) gets label (€2 (y1),...,02(Vi)).

‘m EADS Il 20 Hardness of Approximation
Harald Racke 555/569

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
» Suppose we have labelling 1, ¢> that satisfies just an
«-fraction of edges in I.

» We transfer this labelling to instance I":
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,...,Vk) gets label (L2(y1),...,02(yk)).

» How many edges are happy?

‘m EADS Il 20 Hardness of Approximation
Harald Racke 555/569

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
» Suppose we have labelling 1, ¢> that satisfies just an
«-fraction of edges in I.

» We transfer this labelling to instance I":
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,..., vk) gets label (€2 (y1),...,02(Vi)).
» How many edges are happy?
only («x|E|)k out of |[E[¥I (just an «* fraction)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 555/569

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?

» Suppose we have labelling 1, ¢> that satisfies just an
«-fraction of edges in I.

» We transfer this labelling to instance I":
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,..., vk) gets label (€2 (y1),...,02(Vi)).
» How many edges are happy?
only («x|E|)k out of |[E[¥I (just an «* fraction)
Does this always work?

‘m EADS Il 20 Hardness of Approximation
Harald Racke 555/569

Counter Example

Non interactive agreement:

» Two provers A and B

» The verifier generates two random bits b4, and bg, and
sends one to A and one to B.

» Each prover has to answer one of Ay, A;, By, B; with the
meaning Ao := prover A has been given a bit with value 0.

» The provers win if they give the same answer and if the
answer is correct.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 556/569

Counter Example

The provers can win with probability at most 1/2.

A B

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.

A B
Ao

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 Ao

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 Bo

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 A

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.
A B
Ao

1 Ao

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.
A B
Ao

1 By

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.
A B
Ao

1 A

‘m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

The provers can win with probability at most 1/2.

A
Ao

Regardless what we do 50% of edges are unhappy!

m EADS I 20 Hardness of Approximation
Harald Racke 557/569

Counter Example

In the repeated game the provers can
also win with probability 1/2:

Boosting

Theorem 15
There is a constant ¢ > 0 such if OPT(I) = |E|(1 —) then

ck
OPT(I') < |E"|(1 — 6)sL where L = |Li| + |L>| denotes total
number of labels in I.

m EADS II 20 Hardness of Approximation
Harald Racke 559/569

Boosting

Theorem 15
There is a constant ¢ > 0 such if OPT(I) = |E|(1 —) then

ck
OPT(I') < |E"|(1 — 6)sL where L = |Li| + |L>| denotes total
number of labels in I.

proof is highly non-trivial

m EADS I 20 Hardness of Approximation
Harald Racke 559/569

Hardness of Label Cover

Theorem 16
There are constants c > 0, 6 < 1 s.t. for any k we cannot
distinguish regular instances for Label Cover in which either

» OPT(I) = |E|, or
» OPT(I) = |E|(1 — &)<k

unless each problem in NP has an algorithm running in time
O(nO(k))_

Corollary 17
There is no x-approximation for Label Cover for any constant «.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 560/569

Hardness of Set Cover

Theorem 18
There exist regular Label Cover instances s.t. we cannot
distinguish whether

> all edges are satisfiable, or
» at mostal/ log2(|L1 ||E|)-fraction is satisfiable

unless NP-problems have algorithms with running time
O(nO(loglogn))_

choose k > %logl/(l,(g)(log(lLl||E|)) = O(loglogn).

‘m EADS Il 20 Hardness of Approximation
Harald Racke 561/569

Hardness of Set Cover

Partition System (s, t, h)
» universe U of size s
> t pairs of sets (A1, A1),..., (A, Ap);
Ai = U,Al' = U\Ai
» choosing from any h pairs only one of A;, A; we do not
cover the whole set U

we will show later:
for any h, t with h < t there exist systems with s = |U| < 4t22"

‘m EADS Il 20 Hardness of Approximation
Harald Racke 562/569

Hardness of Set Cover

m EADS I 20 Hardness of Approximation
Harald Racke 563/569

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

m EADS II 20 Hardness of Approximation
Harald Racke 563/569

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E x U, where U is the universe of some partition
system; (t = [L1|, h = 1og(|E[|L1]))

‘m EADS Il 20 Hardness of Approximation
Harald Racke 563/569

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E x U, where U is the universe of some partition
system; (t = [L1|, h = 1og(|E[|L1]))

forallueVvy, ¥y €1,

Sue, = {((w,v),a) | (u,v) € E,a € Ay}

‘m EADS Il 20 Hardness of Approximation
Harald Racke 563/569

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E x U, where U is the universe of some partition
system; (t = [L1|, h = 1og(|E[|L1]))

forallueVvy, ¥y €1,
Sue, = 1((w,v),a) | (u,v) €eE,aecAp}
forallv e Vy,¥> €Ly

Sve, = {((w,v),a) | (u,v) € E,a € Ay, where (£1,02) € Ryyv)}

‘m EADS Il 20 Hardness of Approximation
Harald Racke 563/569

Hardness of Set Cover

Given a Label Cover instance we construct a Set Cover instance;

The universe is E x U, where U is the universe of some partition
system; (t = [L1|, h = 1og(|E[|L1]))

forallu e vi,¢; € Ly
Sue, = {((w,v),a) | (u,v) € E,a € Ay}
forallv e Vo, 0 € Ly
S0, = {((w,v),a) | (u,v) € E,a € Ay, where (£1,€2) € Riy,v)}

note that Sy, y, is well defined because of uniqueness property

‘m EADS Il 20 Hardness of Approximation
Harald Racke 563/569

Hardness of Set Cover

m EADS I 20 Hardness of Approximation
Harald Racke 564/569

Hardness of Set Cover

Suppose that we can make all edges happy.

m EADS I 20 Hardness of Approximation
Harald Racke 564/569

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S, y,’s and S, y,’s, where £ is the label we
assigned to u, and ¥» the label for v. (|V1|+|V2]| sets)

‘m EADS I 20 Hardness of Approximation
Harald Racke 564/569

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S, y,’s and S, y,’s, where £ is the label we
assigned to u, and ¥» the label for v. (|V1|+|V2]| sets)

For an edge (u,v), Sy, ¢, contains {(u,v)} x Ay,. For a happy
edge S, ¢, contains {(u,v)} X Ap,.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 564/569

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S, y,’s and S, y,’s, where £ is the label we
assigned to u, and ¥» the label for v. (|V1|+|V2]| sets)

For an edge (u,v), Sy, ¢, contains {(u,v)} x Ay,. For a happy
edge S, ¢, contains {(u,v)} X Ap,.

Since all edges are happy we have covered the whole universe.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 564/569

Hardness of Set Cover

Suppose that we can make all edges happy.

Choose sets S, y,’s and S, y,’s, where £ is the label we
assigned to u, and ¥» the label for v. (|V1|+|V2]| sets)

For an edge (u,v), Sy, ¢, contains {(u,v)} x Ay,. For a happy
edge S, ¢, contains {(u,v)} X Ap,.

Since all edges are happy we have covered the whole universe.

If the Label Cover instance is completely satisfiable we can cover
with [V1| + |V2| sets.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 564/569

Hardness of Set Cover

Lemma 19

Given a solution to the set cover instance using at most
%(|V1| + |V2|) sets we can find a solution to the Label Cover
instance satisfying at least % |E| edges.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 565/569

Hardness of Set Cover

Lemma 19

Given a solution to the set cover instance using at most
%(|V1| + |V2|) sets we can find a solution to the Label Cover
instance satisfying at least % |E| edges.

If the Label Cover instance cannot satisfy a 2/h?-fraction we
cannot cover with %(|v1| + [V2]|) sets.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 565/569

Hardness of Set Cover

Lemma 19

Given a solution to the set cover instance using at most
%(|V1| + |V2|) sets we can find a solution to the Label Cover
instance satisfying at least % |E| edges.

If the Label Cover instance cannot satisfy a 2/h?-fraction we
cannot cover with %(Ivl\ + [V2]|) sets.

Since differentiating between both cases for the Label Cover
instance is hard, we have an ©(h)-hardness for Set Cover.

‘m EADS Il 20 Hardness of Approximation
Harald Racke 565/569

Hardness of Set Cover

> ny: number of Sy, ;’s in cover

m EADS II 20 Hardness of Approximation
Harald Racke 566/569

Hardness of Set Cover

> ny: number of Sy, ;’s in cover

> ny: number of S, ;’s in cover

m EADS I 20 Hardness of Approximation
Harald Racke 566/569

Hardness of Set Cover

> ny: number of Sy, ;’s in cover
> ny: number of S, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

m EADS II 20 Hardness of Approximation
Harald Racke 566/569

Hardness of Set Cover

> ny: number of Sy, ;’s in cover
> ny: number of S, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

> at least half of the edges have both end-points unmarked,
as the graph is regular

‘m EADS Il 20 Hardness of Approximation
Harald Racke 566/569

Hardness of Set Cover

> ny: number of Sy, ;’s in cover
> ny: number of S, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

> at least half of the edges have both end-points unmarked,
as the graph is regular

» for such an edge (u,v) we must have chosen S, ; and a
corresponding Sy j, s.t. (i,j) € Ry,v (making (u,v) happy)

‘m EADS Il 20 Hardness of Approximation
Harald Racke 566/569

Hardness of Set Cover

> ny: number of Sy, ;’s in cover
> ny: number of S, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

> at least half of the edges have both end-points unmarked,
as the graph is regular

» for such an edge (u,v) we must have chosen S, ; and a
corresponding Sy j, s.t. (i,j) € Ry,v (making (u,v) happy)

> we choose a random label for u from the (at most h/2)

chosen S, ;-sets and a random label for v from the (at most
h/2) Sy j-sets

‘m EADS Il 20 Hardness of Approximation
Harald Racke 566/569

Hardness of Set Cover

> ny: number of Sy, ;’s in cover
> ny: number of S, ;’s in cover

» at most 1/4 of the vertices can have ny,ny = h/2; mark
these vertices

> at least half of the edges have both end-points unmarked,
as the graph is regular

» for such an edge (u,v) we must have chosen S, ; and a
corresponding Sy j, s.t. (i,j) € Ry,v (making (u,v) happy)

» we choose a random label for u from the (at most h/2)
chosen S, ;-sets and a random label for v from the (at most
h/2) Sy j-sets

» (u,v) gets happy with probability at least 4/h?

‘m EADS Il 20 Hardness of Approximation
Harald Racke 566/569

