Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Note that a lower bound is easy to derive. Every choice of
a,b > 0 gives us a lower bound (e.g. a = 12,b = 28 gives us a
lower bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with y; = 0) such that >; y;a;; = cj then > ; y;b; will be an
upper bound.
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Duality

Definition 2
Let z = max{c’x | Ax < b,x = 0} be a linear program P (called
the primal linear program).
The linear program D defined by
w=min{bTy | ATy = ¢,y =0}

is called the dual problem.
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Duality

Lemma 3
The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy > ¢,y =0}
» w=-max{-bTy | -ATy < —c,y =0}

The dual problem is
» z=-—min{-cTx | -Ax = -b,x = 0}

» z=max{cTx | Ax <b,x >0}
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Weak Duality

Let z = max{c'x | Ax < b,x > 0} and
w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x > 0}

7y is dual feasible, iff y € {y | ATy = ¢,y = 0}.

Theorem 4 (Weak Duality)
Let X be primal feasible and let y be dual feasible. Then

cIx<z<w=<b'y.
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Weak Duality

AX <b=>yTAX <9Th (3 = 0)

This gives

Since, there exists primal feasible X with ¢’ %X = z, and dual
feasible ¥ with b7y = w we get z < w.

If P is unbounded then D is infeasible.

m EADS Il 5.1 Weak Duality
Harald Racke

81



5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z=max{c x| Ax =b,x > 0}

w=min{bTy | ATy > ¢}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.
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Proof

Primal:

max{cix | Ax =b,x = 0}

=max{c'x | Ax <b,-Ax < —b,x > 0}

= max{cTx | {_‘:]x < [_bb},x >0}

Dual:
min{[bT -bT]y | [AT -AT]y = ¢,y =0}
= min{[bT -bT] - [?r] ' [AT —AT]. [ij >c,y =20,y" = 0}

:min{bT-(er—y_) ‘AT-()ﬁ—y‘) >c,y =0,y" 20}
min{bTy’ ATy’ > c}
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (Ag!)Tcp > ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.
bly* = (Ax*)Ty* = (Apxi) Ty

= (Apxi) T (AgHTep = (x)TAL(AgH) T ey

_ CTX*

Hence, the solution is optimal.
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5.3 Strong Duality

P =max{cTx | Ax <b,x >0}
na: number of variables, m4: number of constraints

We can put the non-negativity constraints into A (which gives us
unrestricted variables): P = max{clx | Ax < b}

Ny =MNA, My =MA +NA

Dual D = min{bTy | ATy = ¢,y = 0}.
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. 'If we have a conic combination ¥ of ¢ then 1 |
53 Strong Duallty ! bTy is an upper bound of the profit we can |

| obtam (weak duality):

x = (ATy)Ix = yTAx < yTh

If x and y are optimal then the duality gap
is 0 (strong duality). This means

0=cTx-»Th
= (ATy)Tx - yTh
=yT(Ax - b)
1
1
| The last term can only be 0 if y; is 0 when-
1 ever the i-th constraint is not tight. This
:means we have a conic combination of ¢
by normals (columns of AT) of tight con-
| straints.

beer

JA

~
(4

| Conversely, if we have x such that the nor-

. ' mals of tight constraint (at x) give rise to a .

—T -COI‘IIC combination of ¢, we know that x is |
ale | optimal. |

24

O)y

L4

»

Vo)

The profit vector c lies in the cone generated by the normals for
the hops and the corn constraint (the tight constraints).



Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

Z* :w*
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Lemma 6 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{ f(x) : x € X} exists.

(without proof)
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Lemma 7 (Projection Lemma)

Let X < R™ be a non-empty convex set, and let v ¢ X. Then
there exist x* € X with minimum distance from y. Moreover for
all x € X we have (y — x*)T(x —x*) <0.
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Proof of the Projection Lemma
Define f(x) = [ly — x|l

\4

v

v

X # (. Hence, there exists x’ € X.

Define X' = {x e X | [[y — x|l < [l — x'|I}. This set is
closed and bounded.

Applying Weierstrass gives the existence.

v

v
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx — x*||2.

Letting € — 0 gives the result.
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Theorem 8 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: alx = o}

where a € R™, o € R that separates y from X. (a’y < «;
alx = « for all x € X)
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Proof of the Hyperplane Lemma

v

Let x* € X be closest point to y in X.

» By previous lemma (y — x*)T(x — x*) < 0 for all x € X.
Choose a = (x* — y) and o« = al x*.

» Forx e X:al(x —x*) =0, and, hence, a’ x > «.

Also, a’y =al (x* —a) = a— ||a]|? < «

v

v
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Lemma 9 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax e R" with Ax = b, x =0
2. Ay e R™ withATy >0, bTy <0

Assume X satisfies 1. and ¥ satisfies 2. Then

0>yTh=yTAx >0

Hence, at most one of the statements can hold.
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Farkas Lemma

a
b ><3
aq
X X A2
/al
T~
y

If b is not in the cone generated by the columns of A, there
exists a hyperplane y that separates b from the cone.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy >0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0. Hence, yTA > 0 as we can choose x
arbitrarily large.



Lemma 10 (Farkas Lemma; different version)
Let A be an m X n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ax e R" withAx <b,x >0
2. 3y e R™ withATy =0,bTy <0,y =0

Rewrite the conditions:

1. 3x € R™ with [AI]-[);:|=b,XZO,SZO

AT
2. Eye[meith[I]yzO,bTy<0
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Proof of Strong Duality

P: z =max{cIx | Ax < b,x = 0}

D:w=min{bTy | ATy >¢c,y =0}

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e.,
P and D are non-empty). Then

zZ=Ww .
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ>w:
We show z < o implies w < «.

dx € R" dy e R"™;v e R
s.t. Ax < b s.t. ATy —cv
—-cTx < -« bTy — v
x = 0 Y,V

vV A IV

=)

From the definition of &« we know that the first system is
infeasible; hence the second must be feasible.
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Proof of Strong Duality

dy e R"™;v eR

st. ATy —cv = 0
bTy —av < 0
y,v = 0

If the solution v, v has v = 0 we have that

dy € R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
We can rescale this solution (scaling both y and v) s.t. v = 1.

Then v is feasible for the dual but bTy < «. This means that
w < .
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Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let A e Q™" be Q™ ce Q" e Q. Does there exist
xeQ"st. Ax =b,x>0,cTx>x?

Questions:
> Is LP in NP?
> |Is LP in co-NP? yes!
> IS LPin P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).

» We can prove this by providing an optimal basis for the dual.

» A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.
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Complementary Slackness

Lemma 13

Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{b”Ty | ATy = c¢;y = 0} has
solution y*.

1.

Ifx;f‘ > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x = 0.
3.
4. If the i-th constraint in P is not tight than y; = 0.

j
If v} > 0 then the i-th constraint in P is tight.

If we say that a variable x}k (v/) has slack if x;-k >0 >0),
(i.e., the corresponding variable restriction is not tight) and a

contraint has slack if it is not tight, then the above says that for

a primal-dual solution pair it is not possible that a constraint
and its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cIx* < p*TAx* < bTy*
Because of strong duality we then get
CTX* — y*TAX* — bTy*

This gives e.g.

>yTa- CT)J'X;k =0

J
From the constraint of the dual it follows that ¥ A > ¢T. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (¥TA —cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.
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Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4da + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M

s.t. 5C + 4H + 35M >13
15C + 4H + 20M =23
C,HM =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by &¢, €,
and &), respectively.
The profit increases to max{c’x | Ax <b + &x = 0}. Because of
strong duality this is equal to

min (b7 +€T)y
s.t. ATy
y

2%
=)
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >’; sl-y{k.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
> If the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.

Hence, it makes no sense to have left-overs of this resource.

Therefore its slack must be zero.
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Example

max 13a + 23b

s.t. 5a+ 15b + s¢ =480
4a + 4b + Sp =160
35a + 20b + sm = 1190

a, b,sc,sn,sm=0

beer

--T ale

The change in profit when increasing hops by one unit is
= chgleh.
——

y*



Of course, the previous argument about the increase in the
primal objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 14
An (s,t)-flow in a (complete) directed graph G = (V,V X V,c) is
a function f: V x V — R that satisfies

1. For each edge (x,y)
0 < fxy <cCxy .

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)
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Flows

Definition 15
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max Dz fsz— 22 fzs
st. V(z,w)eVxV T 8 Caw Yaw
Vw #s,t X fow—2zfwz = 0 Pw
fow =2 0
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Ssy (¥ =5,t): 145, +1py = 1
Joes (52 32 8, ) ¢ 10xs—1py = =1
Sty (y =5s,t): 18y +1py = 0
Sxt (x #5,0): 105 —1px > 0
Sfot: 145, > 1
Sis: 10;s > -1
Lscy > 0

‘m EADS Il 5.5 Computing Duals
Harald Racke



LP-Formulation of Maxflow
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LP-Formulation of Maxflow

with p; =0 and p; = 1.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pe = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < ¥y, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) > d(x,t) < #Xy +d(y,t)).

‘m EADS Il 5.5 Computing Duals
Harald Racke

115



One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a
cut in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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