Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.
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Set Cover relaxation:

min zle WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]
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We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zé‘:l WiXi
s.t. VueU Xiyes;xi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {fy,} be the maximum
frequency.
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Technique 1: Round the LP solution. Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:
Rounding Algorithm:

1 k . .
Set all x;-values with x; > % to 1. Set all other x;-values to 0. fHn 2i=1 Wiki
s.t. VueU Xiyes;Xxi = 1
Vie{l,..., k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy {fy,} be the maximum

frequency.
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Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.
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Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
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Technique 1: Round the LP solution. Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Rounding Algorithm:

Proof: Every u € U is covered. i
Set all x;-values with x; > 7to 1. Set all other x;-values to 0.

» We know that >, cg x; = 1.

‘m EADS Il 13.1 Deterministic Rounding EADS Il 13.1 Deterministic Rounding
Harald Racke 292/575 Harald Racke



Technique 1: Round the LP solution. Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Rounding Algorithm:

Proof: Every u € U is covered. i
Set all x;-values with x; > 7to 1. Set all other x;-values to 0.

» We know that >, cg x; = 1.
» The sum contains at most f;, < f elements.
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Technique 1: Round the LP solution. Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Rounding Algorithm:

Proof: Every u € U is covered. i
Set all x;-values with x; > 7to 1. Set all other x;-values to 0.

» We know that >, cg x; = 1.
» The sum contains at most f;, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.
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Technique 1: Round the LP solution. Technique 1: Round the LP solution.

Lemma 2
The rounding algorithm gives an f-approximation.

Rounding Algorithm:

Proof: Every u € U is covered. i
Set all x;-values with x; > 7to 1. Set all other x;-values to 0.

v

We know that >, cq, x; = 1.

v

The sum contains at most f;, < f elements.

v

Therefore one of the sets that contain u must have x; > 1/f.

v

This set will be selected. Hence, u is covered.
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Technique 1: Round the LP solution. Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT. Lemma 2
The rounding algorithm gives an f-approximation.
Proof: Every u € U is covered.
» We know that >, cs Xx; = 1.

» The sum contains at most f;, < f elements.

v

Therefore one of the sets that contain u must have x; > 1/f1.
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Technique 1: Round the LP solution. Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT. Lemma 2
The rounding algorithm gives an f-approximation.
> w; Proof: Every u € U is covered.
iel

» We know that >, cs Xx; = 1.

» The sum contains at most f;, < f elements.

v

Therefore one of the sets that contain u must have x; > 1/f1.

v
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Technique 1: Round the LP solution. Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT. Lemma 2
The rounding algorithm gives an f-approximation.
k
>wi< > wilf - xi) Proof: Every u € U is covered.
iel i=1
» We know that >, cs Xx; = 1.
» The sum contains at most f;, < f elements.
» Therefore one of the sets that contain u must have x; > 1/f.
» This set will be selected. Hence, u is covered.
.
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The rounding algorithm gives an f-approximation.
k
>wi< > wilf - xi) Proof: Every u € U is covered.
icl i=1
< ' » We know that >, cs Xx; = 1.
= f - cost(x) ]
» The sum contains at most f;, < f elements.
» Therefore one of the sets that contain u must have x; > 1/f.
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The cost of the rounded solution is at most f - OPT. Lemma 2
The rounding algorithm gives an f-approximation.
k
>wi< > wilf - xi) Proof: Every u € U is covered.
icl i=1
< ' » We know that >, cs Xx; = 1.
= f - cost(x) ]
. 0PT » The sum contains at most f;, < f elements.
<f- .
» Therefore one of the sets that contain u must have x; > 1/f.
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> owi < > wilf - xq)

iel i=1
= f - cost(x)
< f-OPT .
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Technique 2: Rounding the Dual Solution. Technique 1: Round the LP solution.

. The cost of the rounded solution is at most f - OPT.
Relaxation for Set Cover f
k
- . < . . .
Primal: >Dwi< > wilf - xi)
: Z i€l i=1
min e WiXi
iel Wini =f-COSt(X)
s.t. Vu Zi:ueSi x;i =1
Xi > < f-OPT .
.
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Technique 2: Rounding the Dual Solution. Technique 1: Round the LP solution.

Relaxation for Set Cover The cost of the rounded solution is at most f - OPT.

k
. g = 2 . g
Primal: Dual: Z wi = Z wi(f - xi)
iel i=1
min Dier WiXi max 2ueu Yu _ F - cost(x)
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
Xi = Yu =0 Sf-OPT.
.
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Technique 2: Rounding the Dual Solution. Technique 2: Rounding the Dual Solution.

Rounding Algorithm: Relaxation for Set Cover
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli €1

Primal: Dual:
S = w; min 2iel WiXi max 2uet Yu
u — 13 .
wies; S.LVU Diyes, Xi =1 s.t. Vi Xyues, Yu < Wi
Xi = yu =0
.
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Technique 2: Rounding the Dual Solution. Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.
g f-app Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is
tight. This means forall i € I

> Yu=wy
UUES;
.
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Lemma 3

The resulting index set is an f-approximation.
g f-app Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

Proof: tight. This means forall i € I

Every u € U is covered.

> Yu=wy
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Technique 2: Rounding the Dual Solution. Technique 2: Rounding the Dual Solution.

Lemma 3

The resulting index set is an f-approximation.
g f-app Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

Proof: tight. This means forall i € I

Every u € U is covered.

» Suppose there is a u that is not covered. Z Yu = Wi
UUES;
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means forall i € I

> yu=w;
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a 1 that is not covered.
> This means >.,,.,,cs, Yu < w; for all sets S; that contain wu.

» But then y,, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution. Technique 2: Rounding the Dual Solution.

Proof:
Lemma 3
Z w; The resulting index set is an f-approximation.
iel
Proof:

Every u € U is covered.
» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then Y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution. Technique 2: Rounding the Dual Solution.

Proof:
Lemma 3
The resulting index set is an f-approximation.
Swi=> S g f-app
iel ielwues;
Proof:

Every u € U is covered.
» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then Y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:

Jwi=2, D Yu

iel iel u:ues;

=>Hiel:ueSi} - yu
u
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Proof:
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Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel u:ues;

=>Hiel:ueSi} - yu
u

= quyu
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» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then Y, could be increased in the dual solution without
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Technique 2: Rounding the Dual Solution.

Proof:

JWwi=2 > Yu
iel iel u:ues;
=>Hiel:ueSi} - yu
u
Squyu
u

= fzyu
u
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Technique 2: Rounding the Dual Solution.

Lemma 3
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

» Suppose there is a u that is not covered.
» This means >, cs, Yu < w; for all sets S; that contain u.

» But then Y, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution. Technique 2: Rounding the Dual Solution.

Proof:
Lemma 3
The resulting index set is an f-approximation.
Swi=5 S g f-app
iel iel u:ues;
=S il uesil- v Proof: -~
" Every u € U is covered.
=< quyu » Suppose there is a u that is not covered.
u . s
» This means >, cs, Yu < w; for all sets S; that contain u.
<f Z Yu . . . .
” » But then Y, could be increased in the dual solution without
< fcost(x™*) violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution. Technique 2: Rounding the Dual Solution.

Proof:
Lemma 3
The resulting index set is an f-approximation.
Swi=5 S g f-app
iel iel u:ues;
=>Hiel:ueSi} - yu Proof: _
" Every u € U is covered.
< quyu » Suppose there is a u that is not covered.
u s
» This means >, cs, Yu < w; for all sets S; that contain u.
<f Z Yu . . . .
” » But then Y, could be increased in the dual solution without
< fcost(x™*) violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
< f-OPT
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Technique 2: Rounding the Dual Solution.

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second Proof:
algorithm. Then

IcrI .
= dwi=2 > Yu
This means I’ is never better than I. iel 1€l WUES;
=>Hiel:ueSi} - yu
u
= quyu
u
Sfz_')’u
u

< fcost(x™)
< f-OPT
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take S; in the first algorithm. l.e., i € I.
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Proof:

Qwi=, D Yu

iel iel w:ues;

:ZHiEI:UESiH'J’u

= quyu
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take S; in the first algorithm. l.e., i € I.

» This means x; > %
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Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second
algorithm. Then

Icr .

This means I’ is never better than I.

» Suppose that we take S; in the first algorithm. l.e., i € I.

» This means x; > %

» Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.
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Technique 2: Rounding the Dual Solution.

Let I denote the solution obtained by the first rounding
algorithm and I’ be the solution returned by the second Proof:
algorithm. Then

Icr . Zwi:z Z)’u

This means I’ is never better than I. i€l i€l u:ues;
:ZHiEI:uESiH *Yu
u
» Suppose that we take S; in the first algorithm. l.e., i € I.
o ke, : =S fure
» This means x; > 7 u
» Because of Complementary Slackness Conditions the = fzyu
u

corresponding constraint in the dual must be tight.
< fcost(x™)

< f-OPT

v

Hence, the second algorithm will also choose S;.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.
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Because of Complementary Slackness Conditions the
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properties.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

Zyu < cost(x™) < OPT
u

where x* is an optimum solution to the primal LP.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,
Zyu < cost(x™) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

Zyu < cost(x™) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

T

Algorithm 1 PrimalDual

1y <0

210

3: while exists u ¢ J;jc; S; do

4 increase dual variable y,, until constraint for some
new set Sy becomes tight

I —Tu{l}

v
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage
that it is necessary to solve the LP. The following method also
gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

Zyu < cost(x™) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.
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Technique 4: The Greedy Algorithm Technique 3: The Primal Dual Method

Algorithm 1 Greedy

.10
2: fj ~S§; forallj Algorithm 1 PrimalDual
3: while I not a set cover do 1.y <0
: — in.e & I~
4: { — arg mingg o 1 2 _(/) .
5 I —1U ) 3: while exists u ¢ J;c; S; do
6: gj — gj ~ S, forall j 4 increase dual variable y,, until constraint for some

new set Sy becomes tight
I-1u{l}

(%

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

10
Lemma 4 2:Sj—S; forallj
Given positive numbers a1, ...,ay and by, ..., by, and 3: while I not a set cover do
Sc{l,...,k} then 5 U —argmingg . fsUTJ\
A _ Dies i ai > 1O .
ml_mb—ismsm?xb—i 6: Sj—S8;j—S8p forallj

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the

beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s

iterations.

T
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Technique 4: The Greedy Algorithm

Lemma 4

Given positive numbers a,...,ay and b, ..., by, and
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wwj

min —
J 185
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

W , W
min AJ < ZJEOPT AJ
i 1Sl Xjeorr 1Sl
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wy 2.jeopT W OPT OPT
min —— < o <
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s

iterations.
Lemma 4
In the £-th iteration Given positive numbers a,...,ay and by, ..., by, and
Sc{l,...,k} then
. Wj 2.jeopT W OPT OPT
min —— < = — <
7S5 Xjeopr IS Xjeorr IS Mo min % < 2ies®i . i

i bi Xiesbi ™ i bi
since an optimal algorithm can cover the remaining 1, elements
with cost OPT.
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s

iterations.
Lemma 4
In the £-th iteration Given positive numbers a,...,ay and by, ..., by, and
Sc{l,...,k} then
. Wj 2.jeopT W OPT OPT
min —— < = — <
7S5 Xjeopr IS Xjeorr IS Mo min % < 2ies®i . i

i bi Xiesbi ™ i bi
since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT
wj/ISJ-I < ng -
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.
Adding this set to our solution means nyp,; = ny — |§j|.
In the £-th iteration
. Wwj  2jeopT Wj OPT OPT
min —= < = = — =
i 1Sjl - Xjeorr ISjl Xjeorr IS Me

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT
wJ/|SJ| = ny -
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

Adding this set to our solution means nyp,; = ny — |§j|.
In the {-th iteration

3 IS10PT 1y —npsy opt min %I < szOPTuA)j __ OPT _OPT
T T i 1Sil T Yjeorr1Sil Xjeorr ISi1 T Mg

wj

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT
wJ/|SJ| = ny -
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

Z wj Adding this set to our solution means ny,; = ny — |§j|.
Jjel

_ IS;IOPT  np—nygyy
- Ny ng

- OPT

B
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

Ny —Nypyy . 8 : g
Dwj< > - OPT Adding this set to our solution means 1n,,; = n; — |51
jeI =1

_ IS;IOPT  np—nygyy
- Ny ng

- OPT
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Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

T, Adding this set to our solution means nyp,; = ny — |§j|.
; l

jeI =1

s
1 1 1
sOPTZ(Jr +---+) S;lOPT —~
o \ne ng - 1 Ny +1 w; < |51 _ng—neyq . OPT
ne ne

m EADS II 13.4 Greedy EADS II 13.4 Greedy
Harald Racke 305/575 Harald Racke



Technique 4: The Greedy Algorithm Technique 4: The Greedy Algorithm

S wj < Z ""” . OPT

Adding this set to our solution means nyp,; = ny — |§j|.
Jjel 0=1

w < = - OPT

1 1 1
— e — g,
<n ng—l Ny +1) IS;IOPT _ ngp—ny,y
ny ny
1
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Technique 4: The Greedy Algorithm

=H, -OPT < OPT(Inn+1) .
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Adding this set to our solution means nyp,; = ny — |§j|.
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Technique 4: The Greedy Algorithm

A tight example:
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Technique 4: The Greedy Algorithm

=H, -OPT < OPT(Inn+1) .
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Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).
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Technique 5: Randomized Rounding Technique 4: The Greedy Algorithm

One round of randomized rounding: 5 B e G
Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.
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Technique 5: Randomized Rounding Technique 4: The Greedy Algorithm

One round of randomized rounding: 5 B e G

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Technique 5: Randomized Rounding

Probability that u € U is not covered (in one round):

Pr[u not covered in one round] One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= [T a-xp

JUES;
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Pr[u not covered in one round]
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One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
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One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
JUES; JUES;

=2 jues; X

i <e !,

=e

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < ol
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
= H (1-xj) < 1_[ e Xi
j:ueSj j:‘bLESj

_ e*Zj:uEijj < 671

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0
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Pr[3u € U not covered after £ round]
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
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Probability that u € U is not covered (after £ rounds):
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Probability that u € U is not covered (in one round):
Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered] Pr[u not covered in one round]

= H (1-xj) < 1_[ e Xi
j:ueSj j:‘bLESj

_ e*Zj:uEijj < 671

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0
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Probability that u € U is not covered (in one round):
Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered] Pr[u not covered in one round]

< : A
< ZPr[ul not covered after € rounds] _ 1—[ (- xj) < 1—[ e %i
t JUES; JUES;

_ e*Zj:uEijj < 671 .

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0
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Probability that u € U is not covered (in one round):
Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered] Pr[u not covered in one round]

-
< ; < A
< ZPr[ul not covered after € rounds] < ne™ " . _ 1—[ (1-x;) < 1—[ =7
t JUES; JUES;
_ e*Zj:uEijj < 671 .
Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < — -

e
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! |
i

Lemma 5
With high probability O (logn) rounds suffice.
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= H (1-xj) < 1_[ e %i
j:’uESj j:‘bLESj

_ e*Zj:uEijj < 671 .
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1
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! |
i

Lemma 5
With high probability O (logn) rounds suffice.

With high probability:
For any constant & the number of rounds is at most @ (logn)
with probability at least 1 — n~¢.
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Pr[u not covered in one round]

= 1_[ (1-xj) =< 1_[ e %i

j:’uESJ' j:‘bLESj

_ e*Zj:uEijj < 671 .

Probability that u € U is not covered (after £ rounds):
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Proof: We have

Pr[#rounds > (x + 1) Inn] < ne~(x+Dnn _

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u» not covered V ...V u, not covered]
< zPr[ui not covered after £ rounds] < ne ! .
i

Lemma 5
With high probability O (logn) rounds suffice.

With high probability:
For any constant & the number of rounds is at most O (logn)
with probability at least 1 — n~%.
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Expected Cost

> Version A.
Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.
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Proof: We have

Pr[#rounds > (¢ + 1) Inn] < ne~(x+Dnn _
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost]
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Pr[#rounds > (¢ + 1) Inn] < ne~(x+Dnn _
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n" &
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Expected Cost

» Version A.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =
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Expected Cost

» Version A.
Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT
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Expected Cost Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

» Version A.
E[cost] = Pr[success] - E[cost | success] Repeat for s = (o + 1) Inn rounds. If you don’t have a cover
+ Pr[no success] - E[cost | no success] simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT

‘m EADS Il 13.5 Randomized Rounding EADS Il 13.5 Randomized Rounding
Harald Racke 312/575 Harald Racke



Expected Cost Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover

simply repeat the whole process. > Version A

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

contains u.
This means
E[cost | success] E[cost] < (a+1) Inn-cost(LP)+(n-OPT)n=%* = O(Inn)-OPT
.
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Expected Cost Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover

simply repeat the whole process. > Version A

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

contains u.
This means
% )

E[cost | success] E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n"% = O(Inn)-OPT

1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]
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Expected Cost Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover

simply repeat the whole process. > Version A

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

contains u.
This means
%
E[cost | success] E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n"% = O(Inn)-OPT
1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< — FE[cost] <« ——(x+ 1)Inn - cost(LP
Pr[succ.] [ ] 1- n*"‘( ) (LP)
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Expected Cost Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover

simply repeat the whole process. > Version A

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

contains u.

This means

E[cost | success] E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~%* = O(Inn)-OPT
= é(]i[cost] — Pr[no success] - E[cost | no success])

Pr[succ.]
< mlz‘[cost] < 1 “ o (x+1)Inn - cost(LP)
<2(x+1)Inn - OPT
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Expected Cost Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover

simply repeat the whole process. > Version A

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

contains u.

This means

E[cost | success] E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~%* = O(Inn)-OPT
= é(]i[cost] — Pr[no success] - E[cost | no success])

Pr[succ.]

< mlz‘[cost] < 1 “ o (x+1)Inn - cost(LP)
<2(x+1)Inn - OPT

form=>=2and x> 1.
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Expected Cost

» Version B.

Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success|

- ;@[COSU — Pr[no success] - E[cost | no success])
Pr(succ.]
1
= Sl <——(x+1)Inn - cost(LP
Pr[succ.] st 1 - n-« (x+1)Inn - cost(LP)

<2(x+1)Inn - OPT

forn>2and x> 1.
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Expected Cost

» Version B.
Randomized rounding gives an O(logn) approximation. The Repeat for s = («x + 1) Inn rounds. If you don’t have a cover

running time is polynomial with high probability. simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

Theorem 6 (without proof) + Pr[no success] - E[cost | no success]

There is no approximation algorithm for set cover with

approximation guarantee better than %logn unless NP has This means
quasi-polynomial time algorithms (algorithms with running time E[cost | success]
2poly(logn))_ 1
= 7<E[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]
1
< —E[cost] < ——(x+ 1)Inn - cost(LP
Pr[succ.] [ ] 1- n*"‘( ) (LP)
<2(x+1)Inn - OPT
forn>2and x> 1.
‘m EADS Il 13.5 Randomized Rounding EADS Il 13.5 Randomized Rounding
Harald Racke 313/575 Harald Réacke



Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

>

>

jjTLHTTU EADS Il 13.5 Randomized Rounding
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n=2k_-1

Elements are all vectors X over GF[2] of length k (excluding
zero vector).

Every vector y defines a set as follows

— —

Sy:=(XIxXTy=1}

each set contains 2¥~1 vectors; each vector is contained in
2k=1 sets

12 : .
Xi = 51 = 5,7 is fractional solution.

314/575

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 6 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
zpoly(logn))_
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Integrality Gap Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

» n=2k_1
» Elements are all vectors X over GF[2] of length k (excluding

Every collection of p < k sets does not cover all elements. zero vector).

» Every vector y defines a set as follows
Hence, we get a gap of Q(logn).
Sy ={% | X7y =1}

» each set contains 2X~! vectors; each vector is contained in

2k=1 sets
> X = 2,%1 = % is fractional solution.
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Integrality Gap

Techniques:
» Deterministic Rounding
» Rounding of the Dual
> Primal Dual Every collection of p < k sets does not cover all elements.
» Greedy
» Randomized Rounding Hence, we get a gap of Q(logn).
» Local Search

» Rounding Data + Dynamic Programming
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