## Efficient Algorithms and Data Structures I

Deadline: November 21, 10:15 am in the Efficient Algorithms mailbox.

## Homework 1 (5 Points)

Solve the following recurrence relations using generating functions:

1. $a_{n}=a_{n-1}+2^{n-1}$ for $n \geq 1$ with $a_{0}=2$.
2. $a_{n}=-2 a_{n-1}-a_{n-2}$ for $n \geq 2$ with $a_{0}=1$ and $a_{1}=-1$.

## Homework 2 (4 Points)

Solve the following recurrence

$$
\begin{aligned}
& f_{0}=2 \\
& f_{1}=4 \\
& f_{n}=\left(f_{n-1}\right)^{\log \left(f_{n-2}\right)} \quad \text { for } n \geq 2 .
\end{aligned}
$$

Recall that $\log n$ denotes the binary logarithm.

## Homework 3 ( 7 Points)

The mathematical collector Anita Binaros updates her collection of full rooted binary search trees. In these trees, a node is either of leaf or it has two children. While admiring her collection, she muses about the number of full binary search trees with $n+1$ leaves ....

1. Let $b_{n}$ be the number of full rooted binary search trees with $n+1$ leaves (conveniently named $0,1, \ldots, n)$. We set $b_{0}=1$. Show that for $n \geq 1$,

$$
b_{n}=\sum_{k=0}^{n-1} b_{k} b_{n-1-k} .
$$

2. Let $B(z)=\sum_{n \geq 0} b_{n} z^{n}$. Show that $B(z)=z B(z)^{2}+1$.
3. Show that $B(z)=\frac{1-\sqrt{1-4 z}}{2 z}$ is a solution to $B(z)$. We will only consider this solution in the remainder of the exercise.
4. Show that the number of full rooted binary search trees with $n+1$ leaves is $\frac{1}{n+1}\binom{2 n}{n}$. Hint: Use the equality

$$
\sqrt{1-4 z}=-2\left(-\frac{1}{2}+\sum_{n \geq 1} \frac{1}{n}\binom{2(n-1)}{n-1} z^{n}\right) .
$$

## Homework 4 (4 Points)

The depth of a node $v$ in a binary search tree is the number of edges on the shortest path from $v$ to the root of the tree.
Show that there exists a binary search tree with $n$ nodes with height in $\omega(\log (n))$ and average depth in $\mathcal{O}(\log (n))$.

## Tutorial Exercise 1

Solve the following mutual recursion using generating functions:

$$
\begin{aligned}
a_{n} & =a_{n-1}+4 b_{n-1} & & \text { with } a_{0}=1 \\
b_{n} & =a_{n-1}+b_{n-1} & & \text { with } b_{0}=0 .
\end{aligned}
$$

A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag.

- G. Pòlya

