Technische Universität München Fakultät für Informatik Lehrstuhl für Theoretische Informatik Prof. Dr. Harald Räcke Richard Stotz, Dennis Kraft

Efficient Algorithms and Data Structures I

Deadline: November 21, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (5 Points)

Solve the following recurrence relations using generating functions:

- 1. $a_n = a_{n-1} + 2^{n-1}$ for $n \ge 1$ with $a_0 = 2$.
- 2. $a_n = -2a_{n-1} a_{n-2}$ for $n \ge 2$ with $a_0 = 1$ and $a_1 = -1$.

Homework 2 (4 Points)

Solve the following recurrence

$$f_0 = 2$$

 $f_1 = 4$
 $f_n = (f_{n-1})^{\log(f_{n-2})}$ for $n \ge 2$.

Recall that $\log n$ denotes the binary logarithm.

Homework 3 (7 Points)

The mathematical collector Anita Binaros updates her collection of full rooted binary search trees. In these trees, a node is either of leaf or it has two children. While admiring her collection, she muses about the number of full binary search trees with n + 1 leaves

1. Let b_n be the number of full rooted binary search trees with n+1 leaves (conveniently named $0, 1, \ldots, n$). We set $b_0 = 1$. Show that for $n \ge 1$,

$$b_n = \sum_{k=0}^{n-1} b_k b_{n-1-k}$$
.

- 2. Let $B(z) = \sum_{n>0} b_n z^n$. Show that $B(z) = zB(z)^2 + 1$.
- 3. Show that $B(z) = \frac{1-\sqrt{1-4z}}{2z}$ is a solution to B(z). We will only consider this solution in the remainder of the exercise.
- 4. Show that the number of full rooted binary search trees with n + 1 leaves is $\frac{1}{n+1} \binom{2n}{n}$. **Hint:** Use the equality

$$\sqrt{1-4z} = -2\left(-\frac{1}{2} + \sum_{n\geq 1} \frac{1}{n} \binom{2(n-1)}{n-1} z^n\right) .$$

Homework 4 (4 Points)

The depth of a node v in a binary search tree is the number of edges on the shortest path from v to the root of the tree.

Show that there exists a binary search tree with n nodes with height in $\omega(\log(n))$ and average depth in $\mathcal{O}(\log(n))$.

Tutorial Exercise 1

Solve the following mutual recursion using generating functions:

$$a_n = a_{n-1} + 4b_{n-1}$$
 with $a_0 = 1$
 $b_n = a_{n-1} + b_{n-1}$ with $b_0 = 0$.

A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag. - G. Pòlya