Efficient Algorithms and Data Structures I

Deadline: November 7, 10:15 am in the Efficient Algorithms mailbox.

Homework 1 (6 Points)

Give tight asymptotic upper and lower bounds for $T(n)$, where $T(0)$ is an arbitrary constant, for the following recurrence relations

1. $T(n)=T(n-1)+n^{2} \quad$ for $n \geq 1$
2. $T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n . \quad$ for $n \geq 1$

As argued in the lecture you may ignore the fact that function arguments can be noninteger.

Homework 2 (4 Points)

Give tight asymptotic upper and lower bounds for $T(n)$ with

1. $T(n)=2 T(n / 4)+\sqrt{n}$
2. $T(n)=7 T(n / 3)+n^{2}$

Homework 3 (5 Points)

Given two $n \times n$ matrices A and B where n is a power of 2 , we know how to find $C=A \cdot B$ by performing n^{3} multiplications. Now let us consider the following approach. We partition A, B and C into equally sized block matrices as follows:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
$$

Consider the following matrices:

$$
\begin{aligned}
& M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
& M_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
& M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
& M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
& M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
\end{aligned}
$$

Then,

$$
C_{11}=M_{1}+M_{4}-M_{5}+M_{7}
$$

1. Construct the matrices C_{12}, C_{21} and C_{22} from the matrices M_{i}, as demonstrated for C_{11}.
2. Design an efficient algorithm for multiplying two $n \times n$ matrices based on these facts. Analyze its running time.

Homework 4 (5 Points)

Late in autumn, the squirrel Alexander wants to sort all nuts that he collected over the summer by their size. He uses the traditional algorithm SQUIRREL-SORT (Algorithm(1), which is as follows

```
Algorithm 1: SQUIRREL-SORT( \(A, i, j\) )
    if \((A[i]>A[j])\) then
    \(2 \mid \quad \operatorname{swap} A[i] \leftrightarrow A[j]\)
    3 if \(i+1 \geq j\) then
        return
    \(5 k \leftarrow\lfloor(j-i+1) / 3\rfloor\)
    6 \(\operatorname{SQUIRREL}-\operatorname{SORT}(A, i, j-k)\)
    \(7 \operatorname{SQUIRREL}-\operatorname{SORT}(A, i+k, j)\)
    \(8 \operatorname{SQUIRREL}-\operatorname{SORT}(A, i, j-k)\)
```

1. Argue that $\operatorname{SQUIRREL}-\operatorname{SORT}(A, 1, n)$ correctly sorts a given array $A[1 \ldots n]$. Use induction over the array length.
2. Analyze how much time Alexander asymptotically needs to sort his n nuts using a recurrence relation.

Tutorial Exercise 1

Solve the following recurrence relation without using generating functions:

$$
a_{n}=a_{n-1}+3^{n} \quad \text { for } n \geq 1 \text { with } a_{0}=6 .
$$

[The master theorem] is appropriate both as a classroom technique and as tool for practicing algorithm designers.

- Bentley, Haken, Saxe

