7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic
Set?

> time for search ©(n)
» time for insert ®(n) (dominated by searching the item)

> time for delete ©(1) if we are given a handle to the object,
otw. ©®(n)

éfﬁﬂ*ll*IFJB*II*IFiE*EF%ﬂ*iEHEP1ﬂ

m Ernst Mayr, Harald Racke

207

7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let |L;| denote the number of elements in the “express lane”,
and |Lo| = n the number of all elements (ignoring dummy
elements).

Worst case search time: |L;] + % (ignoring additive constants)

Choose |L| = \/n. Then search time O(,/n).

7.6 Skip Lists

Add more express lanes. Lane L; contains roughly every Li—*il-th
item from list L;_;.

Search(x) (k + 1 lists Loy, ..., Lg)
> Find the largest item in list Ly that is smaller than x. At
most |Li| + 2 steps.

» Find the largest item in list Lx_ that is smaller than x. At

[L—1l
most [ 755 | + 2 steps.

> Find the largest item in list L_» that is smaller than x. At

[Li—2]
most [ “F7 | + 2 steps.

> Atmost [Li| + 3f ; 5 +3(k + 1) steps.

7.6 Skip Lists

m Ernst Mayr, Harald Racke

7.6 Skip Lists

Choose ratios between list-lengths evenly, i.e., 'L‘E_l” =7, and,

k

hence, Ly =~ v *n.

Worst case running time is: O *n + kr).
Choose ¥ = nk+1. Then

Kk 1N\ k 1
r"“n+kr = (nkﬂ) n + knk+

1_ -k 1
=Ntk 1 4+ kn ke

k + 1)neT

Choosing k = ©(logn) gives a logarithmic running time.

7.6 Skip Lists

m Ernst Mayr, Harald Racke

210




7.6 Skip Lists

How to do insert and delete?

> If we want that in L; we always skip over roughly the same
number of elements in L; | an insert or delete may require
a lot of re-organisation.

Use randomization instead!

7.6 Skip Lists

m Ernst Mayr, Harald Racke

211

7.6 Skip Lists

Insert:

» A search operation gives you the insert position for element
x in every list.

» Flip a coin until it shows head, and record the number
te{1,2,...} of trials needed.

» Insert x into lists Lo,...,L;_1.

Delete:
> You get all predecessors via backward pointers.
» Delete x in all lists it actually appears in.

The time for both operations is dominated by the search
time.

7.6 Skip Lists

m Ernst Mayr, Harald Racke

212

7.6 Skip Lists
Insert (35):

7.6 Skip Lists

m Ernst Mayr, Harald Racke

213

High Probability

Definition 1 (High Probability)

We say a randomized algorithm has running time O(log n) with

high probability if for any constant « the running time is at most
O (log n) with probability at least 1 — %

Here the ©O-notation hides a constant that may depend on «.

7.6 Skip Lists

m Ernst Mayr, Harald Racke

214




High Probability

Suppose there are a polynomially many events E1, E», ..., Eyp,
£ = n¢ each holding with high probability (e.g. E; may be the
event that the i-th search in a skip list takes time at most
O(logn)).

Then the probability that all E; hold is at least

PrlEy A---AEpl=1-Pr[Ey Vv ---VE]

>1-nf-n«

=1-nt«

This means Pr[E; A - - - A Eg] holds with high probability.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 215

7.6 Skip Lists

Lemma 2
A search (and, hence, also insert and delete) in a skip list with n
elements takes time O (logn) with high probability (w. h. p.).

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability 1/2 and left with
probability 1/2.
We show that w.h.p:

» A “long” search path must also go very high.

» There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 217

216
(1) = ()= (%)
k k k
n\ n! n-...-(n—k+1)><n>k
k) kl'-(m-k)! k-...-1 ~\k
ny_n-..-m-k+1) _n*_ nk-k
k) k! — k! kk - k!
B 5= (%)
= (= — < | =
k k! k
m 7.6 Skip Lists
Ernst Mayr, Harald Racke 218




7.6 Skip Lists

Let E; x denote the event that a search path is of length z
(number of edges) but does not visit a list above Ly.

In particular, this means that during the construction in the
backward analysis we see at most k heads (i.e., coin flips that
tell you to go up) in z trials.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke 219

7.6 Skip Lists

Pr[E; k] < Pr[at most k heads in z trials]

k k
Z)o-(z-k) (E) ~(z-k) <2LZ> -z
< (k)Z < K 2 < K 2

choosing k = ylogn withy >1and z= (B + x)ylogn
2ez\K 2ez\k
b Bk | -y« 28 L«
<(S0) 2t ems (i) o
2e(B+c)\K
= ( 28 ) "
now choosing 3 = 6 gives
(42a
<

k
@) nt=nt

for ¢ > 1.

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

220

7.6 Skip Lists
So far we fixed k = ylogn, y = 1,and z = 7aylogn, « > 1.

This means that a search path of length Q(logn) visits a list on a
level Q(logn), w.h.p.

Let Ay, denote the event that the list Ly, is non-empty. Then

PrAgs1] < n2- kb < ==

For the search to take at least z = 7y logn steps either the
event E, i or the event Ax,; must hold.
Hence,

Pr[search requires z steps] < Pr[E; ] + Pr[Ag41]

<n *+n 7D

This means, the search requires at most z steps, w. h.p.

Skip Lists

Bibliography

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [GT98].

m 7.6 Skip Lists
Ernst Mayr, Harald Racke

222




	Skip Lists

