Prof. Dr. Susanne Albers
Dr. Suzanne van der Ster
Dario Frascaria
Lehrstuhl für Theoretische Informatik
Institut für Informatik
Fall Semester
Technische Universität München
December 7, 2015

Randomized Algorithms

Exercise Sheet 8

Due: December 14, 2015
at $10: 15$, in class

Exercise 8.1 (10 points)
Let X be a non-negative integer-valued random variable with positive expectation. Prove that

$$
\frac{E[X]^{2}}{E\left[X^{2}\right]} \leq P[X \neq 0] \leq E[X] .
$$

Exercise 8.2 (10 points)
The use of the variance of a random variable in bounding its deviation from its expectation is called the second moment method.

In an analogous way, we can speak of the k th moment method. Given is a random variable Y with expectation μ_{Y}. Let k be even and we define $\mu_{Y}^{k}=E\left[\left(Y-\mu_{Y}\right)^{k}\right]$. Let us assume that we are dealing with a variable Y for which μ_{Y}^{k} exists. Show that

$$
P\left[\left|Y-\mu_{Y}\right| \geq t \sqrt[k]{\mu_{Y}^{k}}\right] \leq \frac{1}{t^{k}}
$$

Exercise 8.3 (10 points)
We throw m balls into n bins independently and uniformly at random. Use Markov's and Chebyshev's inequalities in order to compute upper bounds on the probability that a bin contains at least k balls.

Compare these bounds when $m=n$.
Exercise 8.4 (10 points)
Your friendly neighbourhood grocery store knows that you are tired of getting coupons that you already have. So they have a special offer for you! There are n coupons to collect, but now at every time step they select, uniformly at random, k different coupons and then you can choose one to keep. You want to collect all n coupons.

Give a bound (as a function of k and n) on the expected number of coupons you select in order to have collected each coupon.

