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Exercise 8.1 (10 points)
Let X be a non-negative integer-valued random variable with positive expectation. Prove that

E[X]2

E[X2]
≤ P [X 6= 0] ≤ E[X].

Exercise 8.2 (10 points)
The use of the variance of a random variable in bounding its deviation from its expectation is called
the second moment method.

In an analogous way, we can speak of the kth moment method. Given is a random variable Y with
expectation µY . Let k be even and we define µkY = E[(Y − µY )k]. Let us assume that we are dealing
with a variable Y for which µkY exists. Show that
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Exercise 8.3 (10 points)
We throw m balls into n bins independently and uniformly at random. Use Markov’s and Chebyshev’s
inequalities in order to compute upper bounds on the probability that a bin contains at least k balls.

Compare these bounds when m = n.

Exercise 8.4 (10 points)
Your friendly neighbourhood grocery store knows that you are tired of getting coupons that you
already have. So they have a special offer for you! There are n coupons to collect, but now at every
time step they select, uniformly at random, k different coupons and then you can choose one to keep.
You want to collect all n coupons.

Give a bound (as a function of k and n) on the expected number of coupons you select in order to
have collected each coupon.
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