Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Harald Räcke Chris Pinkau

Parallel Algorithms

Due date: December 1st, 2014 before class!

Problem 1 (10 Points)

Given a set of positive integers x_1, \ldots, x_n stored in the first *n* cells of the global memory of an arbitrary CRCW PRAM, the *element distinctness problem* is to determine whether there exist $i \neq j$ such that $x_i = x_j$. Show how to solve this problem in $\mathcal{O}(1)$ time, using *n* processors.

Hint: Exploit the fact that the x_i 's are positive integers.

Problem 2 (10 Points)

Consider the computation of x^n , where x is an input data stored in a location of the global memory.

- 1. Show that x^n can be computed in one step on the ideal PRAM model.
- 2. Show that $\Omega(\log n)$ steps are required by the standard arithmetic CREW PRAM. Assume that each step consists of a read instruction, or a write instruction, or an arithmetic operation from $\{+, -, \times, \div\}$.

Hint: Show that any function computed at the kth step is of degree $\leq 2^k$.

Problem 3 (10 Points)

Recall that there exists a sorting network that sorts n elements with depth $\mathcal{O}(\log n)$ and size $\mathcal{O}(n \log n)$, namely the AKS network.

Using the AKS sorting network, show that sorting *n* elements can be done in $\mathcal{O}\left(\frac{\log n}{\log(1+\frac{p}{n})}\right)$ parallel steps on the parallel comparison tree model of degree $p \ge n$.

Hint: Shrink each $t = \frac{1}{2} \log \left(1 + \frac{p}{n}\right)$ steps into a single step on the parallel comparison tree model.