Winter Semester 2014/15 Problem Set 03 October 27th, 2014

## Parallel Algorithms

Due date: November 3rd, 2014 before class!

Let  $A = (a_1, \ldots, a_n)$  be an array whose elements are drawn from a linearly ordered set.

## Problem 1 (10 Points)

The left match of  $a_i, i \in \{1, ..., n\}$ , is the element  $a_k$  (if it exists) such that k is the maximum index satisfying  $k \in \{1, ..., i-1\}$  and  $a_k < a_i$ . Similarly, we can define the right match of  $a_i$ . The problem of finding the left and right matches of all the elements in A is called the problem of all nearest smaller values (ANSV).

Show how to solve the ANSV problem in  $\mathcal{O}(1)$  time using  $\mathcal{O}(n^2)$  operations on a CRCW PRAM with common priority.

Hint: Use Problem 4 from Problem Set 1.

## Problem 2 (20 Points)

The *suffix-minima problem* is to compute for each  $i \in \{1, ..., n\}$ , the minimum element among  $\{a_i, a_{i+1}, ..., a_n\}$ . We can define the *prefix minima* in a similar way.

- 1. Design an  $\mathcal{O}(1)$  time algorithm for computing the prefix and suffix minima of A, using a total of  $\mathcal{O}(n^2)$  operations.
- 2. Use a  $\sqrt{n}$  divide-and-conquer strategy to obtain an  $\mathcal{O}(\log \log n)$  time algorithm. The total number of operations used must be  $\mathcal{O}(n)$ . Specify the PRAM model needed.