Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen
Prof. Dr. Harald Räcke
Chris Pinkau

Winter Semester 2014/15
Problem Set 03
October 27th, 2014

Chis Pink

## Parallel Algorithms

## Due date: November 3rd, 2014 before class!

Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be an array whose elements are drawn from a linearly ordered set.

## Problem 1 (10 Points)

The left match of $a_{i}, i \in\{1, \ldots, n\}$, is the element $a_{k}$ (if it exists) such that $k$ is the maximum index satisfying $k \in\{1, \ldots, i-1\}$ and $a_{k}<a_{i}$. Similarly, we can define the right match of $a_{i}$. The problem of finding the left and right matches of all the elements in $A$ is called the problem of all nearest smaller values (ANSV).
Show how to solve the ANSV problem in $\mathcal{O}(1)$ time using $\mathcal{O}\left(n^{2}\right)$ operations on a CRCW PRAM with common priority.
Hint: Use Problem 4 from Problem Set 1.

## Problem 2 (20 Points)

The suffix-minima problem is to compute for each $i \in\{1, \ldots, n\}$, the minimum element among $\left\{a_{i}, a_{i+1}, \ldots, a_{n}\right\}$. We can define the prefix minima in a similar way.

1. Design an $\mathcal{O}(1)$ time algorithm for computing the prefix and suffix minima of $A$, using a total of $\mathcal{O}\left(n^{2}\right)$ operations.
2. Use a $\sqrt{n}$ divide-and-conquer strategy to obtain an $\mathcal{O}(\log \log n)$ time algorithm. The total number of operations used must be $\mathcal{O}(n)$. Specify the PRAM model needed.
