The following algorithm colors an n-node cycle with $\lceil \log n \rceil$ colors.

Algorithm 9 BasicColoring	
1: for $1 \le i \le n$ pardo	
2:	$\operatorname{col}(i) \leftarrow i$
3:	$k_i \leftarrow \text{smallest bitpos where } \operatorname{col}(i) \text{ and } \operatorname{col}(S(i)) \text{ differ}$
4:	$\operatorname{col}'(i) \leftarrow 2k_i + \operatorname{col}(i)_{k_i}$

(bit positions are numbered starting with 0)

v	col	k	col'
1	0001	1	2
3	0011	2	4
7	0111	0	1
14	1110	2	5
2	0010	0	0
15	1111	0	1
4	0100	0	0
5	0101	0	1
6	0110	1	3
8	1000	1	2
10	1010	0	0
11	1011	0	1
12	1100	0	0
9	1001	2	4
13	1101	2	5

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

2(t-1) + 1

and bit-length at most

$\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1)\rceil \leq \lceil \log_2(2t)\rceil = \lceil \log_2(t)\rceil + 1$

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$$

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

4.6 Symmetry Breaking

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 65/283

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

4.6 Symmetry Breaking

▲ 個 ▶ ▲ 臺 ▶ ▲ 臺 ▶ 65/283

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

Algorithm 10 ReColor	
1: for ℓ ← 5 to 3	
2:	for $1 \le i \le n$ pardo
3:	if $col(i) = \ell$ then
4:	$\operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]),\operatorname{col}(S[i])\}\}$

This requires time O(1) and work O(n).

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

Algorithm 10 ReColor	
1: for ℓ ← 5 to 3	
2:	for $1 \le i \le n$ pardo
3:	if $col(i) = \ell$ then
4:	$\operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}$

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

Lemma 7

We can color vertices in a ring with three colors in $O(\log^* n)$ time and with $O(n \log^* n)$ work.

not work optimal

Lemma 8

Given n integers in the range $0, ..., O(\log n)$, there is an algorithm that sorts these numbers in $O(\log n)$ time using a linear number of operations.

Proof: Exercise!


```
Algorithm 11 OptColor1: for 1 \le i \le n pardo2: col(i) \leftarrow i3: apply BasicColoring once4: sort vertices by colors5: for \ell = 2\lceil \log n \rceil to 3 do6: for all vertices i of color \ell pardo7: col(i) \leftarrow min\{\{0, 1, 2\} \setminus \{col(P[i]), col(S[i])\}\}
```


Lemma 9

A ring can be colored with 3 colors in time $O(\log n)$ and with work O(n).

work optimal but not too fast

