4.5 Inserting into a (2, 3)-tree

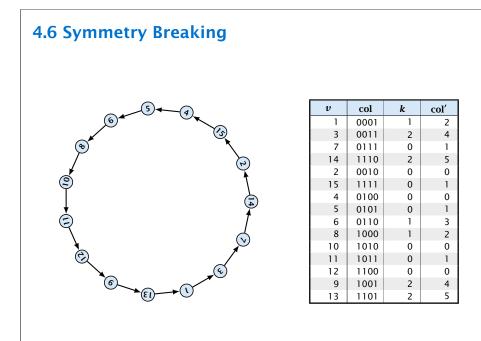
- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase *i* of round *r* as long as phase *i* of round r - 1 and (of course), phase i - 1 of round *r* has finished.

This is called Pipelining. Using this technique we can perform all rounds in Step 4 in just $O(\log k + \log n)$ many parallel steps.

	4.5 Inserting into a (2,3)-tree	
🛛 💾 🗋 🖉 🛛 🖓 🛛 🖓 🖉 🖉		61



4.6 Symmetry Breaking

The following algorithm colors an n-node cycle with $\lceil \log n \rceil$ colors.

1: fc	or $1 \le i \le n$ pardo
2:	$\operatorname{col}(i) \leftarrow i$
3:	$k_i \leftarrow \text{smallest bitpos where } \operatorname{col}(i) \text{ and } \operatorname{col}(S(i)) \text{ differ}$
4:	$\operatorname{col}'(i) \leftarrow 2k_i + \operatorname{col}(i)_{k_i}$
hit nos	itions are numbered starting with ()
bit pos	itions are numbered starting with 0)
bit pos	sitions are numbered starting with 0) 4.6 Symmetry Breaking

4.6 Symmetry Breaking

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

2(t-1) + 1

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$$

Applying the algorithm repeatedly generates a constant number of colors after $O(\log^* n)$ operations.

Note that the first inequality holds because 2(t - 1) - 1 is odd.

4.6 Symmetry Breaking

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

Algorithm 10 ReColor		
1: for ℓ ← 5 to 3		
2:	for $1 \le i \le n$ pardo	
3:	if $\operatorname{col}(i) = \ell$ then	
4:	$\operatorname{col}(i) \leftarrow \min\{\{0, 1, 2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}$	

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

	4.6 Symmetry Breaking	
U LU U © Harald Räcke	6	•5

4.6 Symmetry Breaking

Lemma 8

Given n integers in the range $0, ..., O(\log n)$, there is an algorithm that sorts these numbers in $O(\log n)$ time using a linear number of operations.

Proof: Exercise!

PA ©Harald Räcke

4.6 Symmetry Breaking

67

4.6 Symmetry Breaking

Lemma 7

We can color vertices in a ring with three colors in $O(\log^* n)$ time and with $O(n \log^* n)$ work.

4.6 Symmetry Breaking

not work optimal

PA © Harald Räcke

4.6 Symmetry Breaking Algorithm 11 OptColor 1: for $1 \le i \le n$ pardo $col(i) \leftarrow i$ 2: 3: apply BasicColoring once 4: sort vertices by colors 5: for $\ell = 2[\log n]$ to 3 do for all vertices i of color ℓ pardo 6: $\operatorname{col}(i) \leftarrow \min\{\{0, 1, 2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}$ 7: We can perform Lines 6 and 7 in time $\mathcal{O}(n_{\ell})$ only because we sorted before. In general a statement like "**for** constraint **pardo**" should only contain a contraint on the id's of the processors ! but not something complicated (like the color) which has to be checked and, hence, induces $\frac{1}{2}$ work. Because of the sorting we can transform this complicated constraint into a constraint on $\frac{1}{2}$ just the processor id's.

PA © Harald Räcke 66

Lemma 9

A ring can be colored with 3 colors in time $O(\log n)$ and with work O(n).

work optimal but not too fast

	4.6 Symmetry Breaking	
UUUC © Harald Räcke		69

