4.3 Divide \& Conquer - Merging

$A=\left(a_{1}, \ldots, a_{n}\right) ; B=\left(b_{1}, \ldots, b_{n}\right) ;$
$\log n$ integral; $k:=n / \log n$ integral;

```
Algorithm 8 GenerateSubproblems
    \(j_{0} \leftarrow 0\)
    \(j_{k} \leftarrow n\)
        for \(1 \leq i \leq k-1\) pardo
        \(j_{i} \leftarrow \operatorname{rank}\left(b_{i \log n}: A\right)\)
    for \(0 \leq i \leq k-1\) pardo
        \(B_{i} \leftarrow\left(b_{i \log n+1}, \ldots, b_{(i+1) \log n}\right)\)
        \(A_{i} \leftarrow\left(a_{j_{i}+1}, \ldots, a_{j_{i+1}}\right)\)
```

If C_{i} is the merging of A_{i} and B_{i} then the sequence $C_{0} \ldots C_{k-1}$ is a sorted sequence.

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(1)$ with n^{2} processors.
proof on board..

4.3 Divide \& Conquer - Merging

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n)$.

Note that in a sub-problem B_{i} has length $\log n$.
If we run the algorithm again for every subproblem, (where A_{i} takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_{j} and B_{j} have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $\mathcal{O}(\log n)$ and work $\mathcal{O}\left(\left|A_{i}\right|+\left|B_{i}\right|\right)$.
Parallelizing the last step gives total work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$.
the resulting algorithm is work optimal

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(\log \log n)$ with n processors and work $\mathcal{O}(n \log \log n)$.
proof on board...

4.4 Maximum Computation

Lemma 6
On a CRCW PRAM the maximum of n numbers can be computed in time $\mathcal{O}(\log \log n)$ with n processors and work $\mathcal{O}(n)$.
proof on board...

4.5 Inserting into a $(2,3)$-tree

1. determine for every x_{i} the leaf element before which it has to be inserted
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM
all x_{i} 's that have to be inserted before the same element form a chain
2. determine the largest/smallest/middle element of every chain
time: $\mathcal{O}(\log k)$; work: $\mathcal{O}(k)$;
3. insert the middle element of every chain compute new chains
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}\left(k_{i} \log n+k\right) ; k_{i}=\#$ inserted elements
(computing new chains is constant time)
4. repeat Step 3 for logarithmically many rounds time: $\mathcal{O}(\log n \log k)$; work: $\mathcal{O}(k \log n)$;

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence $x_{0}<x_{1}<x_{2}<\cdots<x_{k}$ of elements. We want to insert elements x_{1}, \ldots, x_{k} into the tree $(k \ll n)$.
time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$

Step 3

- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer
- we can use the same routine for every level

