
4.3 Divide & Conquer — Merging

A = (a1, . . . , an); B = (b1, . . . , bn);
logn integral; k := n/ logn integral;

Algorithm 8 GenerateSubproblems

1: j0 ← 0

2: jk ← n
3: for 1 ≤ i ≤ k− 1 pardo

4: ji ← rank(bi logn : A)
5: for 0 ≤ i ≤ k− 1 pardo

6: Bi ← (bi logn+1, . . . , b(i+1) logn)
7: Ai ← (aji+1, . . . , aji+1)

If Ci is the merging of Ai and Bi then the sequence C0 . . . Ck−1 is

a sorted sequence.

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 53

4.3 Divide & Conquer — Merging

We can generate the subproblems in time O(logn) and work

O(n).

Note that in a sub-problem Bi has length logn.

If we run the algorithm again for every subproblem, (where Ai
takes the role of B) we can in time O(log logn) and work O(n)
generate subproblems where Aj and Bj have both length at

most logn.

Such a subproblem can be solved by a single processor in time

O(logn) and work O(|Ai| + |Bi|).
Parallelizing the last step gives total work O(n) and time

O(logn).

the resulting algorithm is work optimal

PA 4.3 Divide & Conquer — Merging

© Harald Räcke 54

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed

in time O(1) with n2 processors.

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 55

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n log logn).

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 56

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed

in time O(log logn) with n processors and work O(n).

proof on board...

PA 4.4 Maximum Computation

© Harald Räcke 57

4.5 Inserting into a (2, 3)-tree

Given a (2,3)-tree with n elements, and a sequence

x0 < x1 < x2 < · · · < xk of elements. We want to insert

elements x1, . . . , xk into the tree (k� n).

time: O(log n); work: O(k log n)

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞

a1 a4

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 58

4.5 Inserting into a (2, 3)-tree

1. determine for every xi the leaf element before which it has

to be inserted

time: O(logn); work: O(k logn); CREW PRAM

all xi’s that have to be inserted before the same element

form a chain

2. determine the largest/smallest/middle element of every

chain

time: O(logk); work: O(k);
3. insert the middle element of every chain

compute new chains

time: O(logn); work: O(ki logn+ k); ki= #inserted

elements

(computing new chains is constant time)

4. repeat Step 3 for logarithmically many rounds

time: O(logn logk); work: O(k logn);

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 59

Step 3

a0

a0 a1

a2 a3

a2 a3 a4

a5 a6

a5 a6 ∞
x3 x5 x9

a0

a0 a1

x3 a2 x5 a3 x9

x3 a2 x5 a3 x9 a4

a5 a6

a5 a6 ∞

a0

a0 a1

x3 a2

x3 a2 x5

a3 x9

a3 x9 a4

a5 a6

a5 a6 ∞

a1 a4

x5

a1 a4

ñ each internal node is split into at most two parts

ñ each split operation promotes at most one element

ñ hence, on every level we want to insert at most one element

per successor pointer

ñ we can use the same routine for every level

PA 4.5 Inserting into a (2,3)-tree

© Harald Räcke 60

