4.3 Divide & Conquer — Merging

 $A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$ log *n* integral; $k := n/\log n$ integral;

Algorithm 8 GenerateSubproblems

1: $J_0 \leftarrow 0$	1:
2: $j_k \leftarrow n$	2:
3: for $1 \le i \le k-1$ pardo	3:
4: $j_i \leftarrow \operatorname{rank}(b_{i\log n}:A)$	4:
5: for $0 \le i \le k - 1$ pardo	5:
6: $B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})$	6:
7: $A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})$	7:

If C_i is the merging of A_i and B_i then the sequence $C_0 \dots C_{k-1}$ is a sorted sequence.

	4 3 Divide & Conquer — Merging
Brand Räcke	his bride a conquer - merging

4.4 Maximum Computation

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time O(1) with n^2 processors.

proof on board...

PA ©Harald Räcke

4.4 Maximum Computation

55

53

4.3 Divide & Conquer — Merging

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

the resulting algorithm is work optimal

PA © Harald Räcke

4.3 Divide & Conquer — Merging

4.4 Maximum Computation

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work $O(n \log \log n)$.

proof on board...

54

4.4 Maximum Computation

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work O(n).

proof on board...

	PA	
	© Harald Räcke	

5

4.4 Maximum Computation

57

59

4.5 Inserting into a (2, 3)-tree

1. determine for every x_i the leaf element before which it has to be inserted

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

2. determine the largest/smallest/middle element of every chain

time: $\mathcal{O}(\log k)$; work: $\mathcal{O}(k)$;

3. insert the middle element of every chain compute new chains

time: $O(\log n)$; work: $O(k_i \log n + k)$; k_i = #inserted elements

(computing new chains is constant time)

 repeat Step 3 for logarithmically many rounds time: O(log n log k); work: O(k log n);

```
PA
©Harald Räcke
```

4.5 Inserting into a (2,3)-tree

4.5 Inserting into a (2, 3)-tree

Given a (2, 3)-tree with n elements, and a sequence $x_0 < x_1 < x_2 < \cdots < x_k$ of elements. We want to insert elements x_1, \ldots, x_k into the tree $(k \ll n)$. time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$

