Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

Parallel Computing

A parallel computer is a collection of processors usually of the same type, interconnected to allow coordination and exchange of data.

The processors are primarily used to jointly solve a given problem.

Distributed Systems

A set of possibly many different types of processors are distributed over a larger geographic area.

Processors do not work on a single problem.

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- ▶ ...

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- **>** ...

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- **.**...

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability

>

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- **.** . . .

How do we evaluate sequential algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- **•** ...

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- **...**

- performance (e.g. runtime) depends on problem size n and on number of processors p
- statements usually only hold for restricted types of paralleless.
- machine as parallel computers may have vasify different

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- **...**

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- **...**

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement

. . . .

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement

. . . .

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- **...**

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- **.**..

- performance (e.g. runtime) depends on problem size n and on number of processors p
- statements usually only hold for restricted types of parallel machine as parallel computers may have vastly different characteristics (in particular w.r.t. communication)

How do we evaluate parallel algorithms?

- time efficiency
- space utilization
- energy consumption
- programmability
- communication requirement
- **.** . . .

- performance (e.g. runtime) depends on problem size n and on number of processors p
- statements usually only hold for restricted types of parallel machine as parallel computers may have vastly different characteristics (in particular w.r.t. communication)

Suppose a problem P has sequential complexity $T^*(n)$, i.e., there is no algorithm that solves P in time $o(T^*(n))$.

Definition 1

The speedup $S_{\mathcal{P}}(n)$ of a parallel algorithm A that requires time $T_{\mathcal{P}}(n)$ for solving P with \mathcal{P} processors is defined as

$$S_p(n) = \frac{T^*(n)}{T_p(n)}$$

Clearly, $S_p(n) \leq p$. Goal: obtain $S_p(n) \approx p$.

Suppose a problem P has sequential complexity $T^*(n)$, i.e., there is no algorithm that solves P in time $o(T^*(n))$.

Definition 1

The speedup $S_p(n)$ of a parallel algorithm A that requires time $T_p(n)$ for solving P with p processors is defined as

$$S_p(n) = \frac{T^*(n)}{T_p(n)} .$$

Clearly, $S_p(n) \leq p$. Goal: obtain $S_p(n) \approx p$.

Suppose a problem P has sequential complexity $T^*(n)$, i.e., there is no algorithm that solves P in time $o(T^*(n))$.

Definition 1

The speedup $S_p(n)$ of a parallel algorithm A that requires time $T_p(n)$ for solving P with p processors is defined as

$$S_p(n) = \frac{T^*(n)}{T_p(n)} .$$

Clearly, $S_p(n) \leq p$. Goal: obtain $S_p(n) \approx p$.

Suppose a problem P has sequential complexity $T^*(n)$, i.e., there is no algorithm that solves P in time $o(T^*(n))$.

Definition 1

The speedup $S_p(n)$ of a parallel algorithm A that requires time $T_p(n)$ for solving P with p processors is defined as

$$S_p(n) = \frac{T^*(n)}{T_p(n)} .$$

Clearly, $S_p(n) \leq p$. Goal: obtain $S_p(n) \approx p$.

Definition 2

The efficiency of a parallel algorithm A that requires time $T_p(n)$ when using p processors on a problem of size n is

$$E_p(n) = \frac{T_1(n)}{pT_p(n)} \ .$$

 $E_p(n) \approx 1$ indicates that the algorithm is running roughly p times faster with p processors than with one processor.

Note that $E_p(n) \leq \frac{T_1(n)}{pT_{\infty}(n)}$. Hence, the efficiency goes down rapidly if $p \geq T_1(n)/T_{\infty}(n)$.

Definition 2

The efficiency of a parallel algorithm A that requires time $T_p(n)$ when using p processors on a problem of size n is

$$E_p(n) = \frac{T_1(n)}{pT_p(n)} \ .$$

 $E_p(n) \approx 1$ indicates that the algorithm is running roughly p times faster with p processors than with one processor.

Note that $E_p(n) \leq \frac{T_1(n)}{pT_{\infty}(n)}$. Hence, the efficiency goes down rapidly if $p \geq T_1(n)/T_{\infty}(n)$.

Definition 2

The efficiency of a parallel algorithm A that requires time $T_p(n)$ when using p processors on a problem of size n is

$$E_p(n) = \frac{T_1(n)}{pT_p(n)}.$$

 $E_p(n) \approx 1$ indicates that the algorithm is running roughly p times faster with p processors than with one processor.

Note that $E_p(n) \leq \frac{T_1(n)}{pT_{\infty}(n)}$. Hence, the efficiency goes down rapidly if $p \geq T_1(n)/T_{\infty}(n)$.

Definition 2

The efficiency of a parallel algorithm A that requires time $T_p(n)$ when using p processors on a problem of size n is

$$E_p(n) = \frac{T_1(n)}{pT_p(n)}.$$

 $E_p(n) \approx 1$ indicates that the algorithm is running roughly p times faster with p processors than with one processor.

Note that $E_p(n) \leq \frac{T_1(n)}{pT_{\infty}(n)}$. Hence, the efficiency goes down rapidly if $p \geq T_1(n)/T_{\infty}(n)$.

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

Simplicity

A model should allow to easily analyze various performance measures (speed, communication, memory utilization etc.).

Results should be as hardware-independent as possible.

Implementability

Parallel algorithms developed in a model should be easily implementable on a parallel machine.

Theoretical analysis should carry over and give meaningful performance estimates.

DAG model — computation graph

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

Often used for automatically parallelizing numerical computations.

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

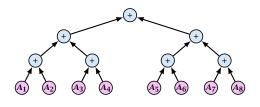
- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

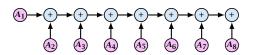
- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

- nodes represent operations (single instructions or larger blocks)
- edges represent dependencies (precedence constraints)
- closely related to circuits; however there exist many different variants
- branching instructions cannot be modelled
- completely hardware independent
- scheduling is not defined

Example: Addition





Here, vertices without incoming edges correspond to input data. The graph can be viewed as a data flow graph.

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_v and a processor p_v to every node.

Definition 3

A scheduling of a DAG G=(V,E) on p processors is an assignment of pairs (t_v,p_v) to every internal node $v\in V$, s.t.,

$$= t_u = t_v \Rightarrow p_u \neq p_v$$

where a non-internal node x (an input node) has $t_{\scriptscriptstyle X}=0.$ T is the length of the schedule.

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_v and a processor p_v to every node.

Definition 3

A scheduling of a DAG G=(V,E) on p processors is an assignment of pairs (t_v,p_v) to every internal node $v\in V$, s.t.,

- $p_v \in \{1, ..., p\}; t_v \in \{1, ..., T\}$
- $ightharpoonup t_u = t_v \Rightarrow p_u \neq p_v$
- $(u,v) \in E \Rightarrow t_v \ge t_u + 1$

where a non-internal node x (an input node) has $t_x=0$. T is the length of the schedule.

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_v and a processor p_v to every node.

Definition 3

A scheduling of a DAG G=(V,E) on p processors is an assignment of pairs (t_v,p_v) to every internal node $v\in V$, s.t.,

▶
$$p_v \in \{1, ..., p\}; t_v \in \{1, ..., T\}$$

$$t_u = t_v \Rightarrow p_u \neq p_v$$

$$(u,v) \in E \Rightarrow t_v \ge t_u + 1$$

where a non-internal node x (an input node) has $t_x = 0$. T is the length of the schedule.

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_v and a processor p_v to every node.

Definition 3

A scheduling of a DAG G=(V,E) on p processors is an assignment of pairs (t_v,p_v) to every internal node $v\in V$, s.t.,

- $p_v \in \{1, ..., p\}; t_v \in \{1, ..., T\}$
- $t_u = t_v \Rightarrow p_u \neq p_v$
- $(u,v) \in E \Rightarrow t_v \ge t_u + 1$

where a non-internal node x (an input node) has $t_x=0$. T is the length of the schedule.

The DAG itself is not a complete algorithm. A scheduling implements the algorithm on a parallel machine, by assigning a time-step t_v and a processor p_v to every node.

Definition 3

A scheduling of a DAG G=(V,E) on p processors is an assignment of pairs (t_v,p_v) to every internal node $v\in V$, s.t.,

- $p_v \in \{1, ..., p\}; t_v \in \{1, ..., T\}$
- $ightharpoonup t_u = t_v \Rightarrow p_u \neq p_v$
- $(u,v) \in E \Rightarrow t_v \ge t_u + 1$

where a non-internal node x (an input node) has $t_x = 0$.

T is the length of the schedule.

The parallel complexity of a DAG is defined as

$$T_p(n) = \min_{\text{schedule } S} \{T(S)\}$$
.

 $T_1(n)$: #internal nodes in DAG

 $T_{\infty}(n)$: diameter of DAG

Clearly

$$T_p(n) \ge T_\infty(n)$$

 $T_p(n) \ge T_1(n)/p$

Lemma 4

A schedule with length $O(T_1(n)/p + T_{\infty}(n))$ can be found easily.

Lemma 5

The parallel complexity of a DAG is defined as

$$T_p(n) = \min_{\text{schedule } S} \{T(S)\}$$
 .

 $T_1(n)$: #internal nodes in DAG

 $T_{\infty}(n)$: diameter of DAG

Clearly,

$$T_p(n) \ge T_\infty(n)$$

 $T_p(n) \ge T_1(n)/p$

Lemma 4

A schedule with length $\mathcal{O}(T_1(n)/p + T_{\infty}(n))$ can be found easily.

Lemma 5

The parallel complexity of a DAG is defined as

$$T_p(n) = \min_{\text{schedule } S} \{T(S)\}$$
.

 $T_1(n)$: #internal nodes in DAG

 $T_{\infty}(n)$: diameter of DAG

Clearly

$$T_p(n) \ge T_\infty(n)$$

 $T_p(n) \ge T_1(n)/p$

Lemma 4

A schedule with length $\mathcal{O}(T_1(n)/p + T_{\infty}(n))$ can be found easily.

Lemma 5

The parallel complexity of a DAG is defined as

$$T_p(n) = \min_{\text{schedule } S} \{T(S)\}$$
.

 $T_1(n)$: #internal nodes in DAG

 $T_{\infty}(n)$: diameter of DAG

Clearly,

$$T_p(n) \ge T_\infty(n)$$

 $T_n(n) \ge T_1(n)/p$

Lemma 4

A schedule with length $\mathcal{O}(T_1(n)/p + T_{\infty}(n))$ can be found easily.

Lemma 5

The parallel complexity of a DAG is defined as

$$T_p(n) = \min_{\text{schedule } S} \{T(S)\}$$
.

 $T_1(n)$: #internal nodes in DAG

 $T_{\infty}(n)$: diameter of DAG

Clearly,

$$T_p(n) \ge T_\infty(n)$$

 $T_p(n) \ge T_1(n)/p$

Lemma 4

A schedule with length $O(T_1(n)/p + T_{\infty}(n))$ can be found easily.

Lemma 5

The parallel complexity of a DAG is defined as

$$T_p(n) = \min_{\text{schedule } S} \{T(S)\}$$
.

 $T_1(n)$: #internal nodes in DAG

 $T_{\infty}(n)$: diameter of DAG

Clearly,

$$T_p(n) \ge T_\infty(n)$$

 $T_p(n) \ge T_1(n)/p$

Lemma 4

A schedule with length $O(T_1(n)/p + T_{\infty}(n))$ can be found easily.

Lemma 5

In principle, there could be a different DAG for every input size n.

An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.

In principle, there could be a different DAG for every input size $n_{\cdot \cdot \cdot}$

An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.

In principle, there could be a different DAG for every input size n.

An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.

In principle, there could be a different DAG for every input size n.

An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.

In principle, there could be a different DAG for every input size n.

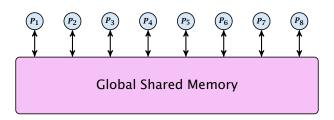
An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.

In principle, there could be a different DAG for every input size n.

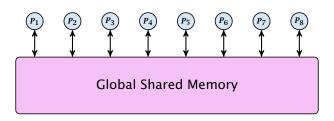
An algorithm (e.g. for a RAM) must work for every input size and must be of finite description length.

Hence, specifying a different DAG for every n has more expressive power.



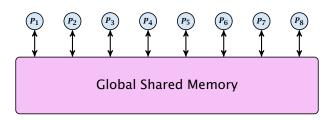
All processors are synchronized.

- read a register from alobal memory joto local med
 - do a local computation à la RAM
 - write a local register into global memory



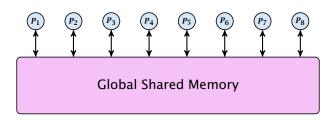
All processors are synchronized.

- read a register morn groups inc
 - do a local computation à la RAM
 - write a local register into global memory



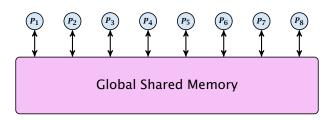
All processors are synchronized.

- read a register from global memory into local memory
- do a local computation à la RAM
- write a local register into global memory



All processors are synchronized.

- read a register from global memory into local memory
- do a local computation à la RAM
- write a local register into global memory



All processors are synchronized.

- read a register from global memory into local memory
- do a local computation à la RAM
- write a local register into global memory

Every processor executes the same program.

However, the program has access to two special variables:

```
political number of processors
```

The following (stupid) program copies the content of the global register x[1] to registers x[2]...x[p].

```
Algorithm 1 copy

1: if id = 1 then round - 1

2: while round \le p and id = round do

3: x[id + 1] - x[id]

4: round \leftarrow round + 1
```


Every processor executes the same program.

However, the program has access to two special variables:

- p: total number of processors
- \rightarrow $id \in \{1, ..., p\}$: the id of the current processor

The following (stupid) program copies the content of the global register x[1] to registers x[2]...x[p].

```
Algorithm 1 copy

1: if id = 1 then round \leftarrow 1

2: while round \le p and id = round do

3: x[id + 1] \leftarrow x[id]

4: round \leftarrow round + 1
```


Every processor executes the same program.

However, the program has access to two special variables:

- p: total number of processors
- ▶ $id \in \{1, ..., p\}$: the id of the current processor

The following (stupid) program copies the content of the global register x[1] to registers x[2]...x[p].

```
Algorithm 1 copy

1: if id = 1 then round \leftarrow 1

2: while round \le p and id = round do

3: x[id + 1] \leftarrow x[id]

4: round \leftarrow round + 1
```


Every processor executes the same program.

However, the program has access to two special variables:

- p: total number of processors
- ▶ $id \in \{1, ..., p\}$: the id of the current processor

The following (stupid) program copies the content of the global register x[1] to registers x[2]...x[p].

Algorithm 1 copy

- 1: **if** id = 1 **then** $round \leftarrow 1$
- 2: while $round \le p$ and id = round do
- 3: $x[id+1] \leftarrow x[id]$
- 4: $round \leftarrow round + 1$

- processors can effectively execute different code because of branching according to id
- however, not arbitrarily; still uniform model of computation

Often it is easier to explicitly define which parts of a program are executed in parallel:

- processors can effectively execute different code because of branching according to id
- however, not arbitrarily; still uniform model of computation

Often it is easier to explicitly define which parts of a program are executed in parallel:

- processors can effectively execute different code because of branching according to id
- however, not arbitrarily; still uniform model of computation

Often it is easier to explicitly define which parts of a program are executed in parallel:

```
Algorithm 2 sum
1: // computes sum of x[1]...x[p]
2: // red part is executed only by processor 1
3: \gamma \leftarrow 1
4: while 2^r \leq p do
5: for id \mod 2^r = 1 pardo
6: // only executed by processors whose id matches
7:
            x[id] = x[id] + x[id + 2^{r-1}]
   r \leftarrow r + 1
9: return x[1]
```

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM: concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM: concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed

- EREW PRAM: simultaneous access is not allowed
- CRFW PRAM: concurrent read accesses to the same location are allowed: write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM: concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed
 - commom CRCW PRAM
 all processors writing to x[i] must write same value
 - arbitrary CRCW PRAM
 values may be different; an arbitrary processor succeeds
 - priority CRCW PRAM
 values may be different; processor with smallest id succeeds

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM: concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed
 - commom CRCW PRAM all processors writing to x[i] must write same value
 - arbitrary CRCW PRAM
 values may be different; an arbitrary processor succeeds
 - priority CRCW PRAM
 values may be different; processor with smallest id succeeds

- EREW PRAM: simultaneous access is not allowed
- CREW PRAM: concurrent read accesses to the same location are allowed; write accesses have to be exclusive
- CRCW PRAM: concurrent read and write accesses allowed
 - commom CRCW PRAM all processors writing to x[i] must write same value
 - arbitrary CRCW PRAM
 values may be different; an arbitrary processor succeeds
 - priority CRCW PRAM
 values may be different; processor with smallest id succeeds

Algorithm 3 sum

```
1: // computes sum of x[1]...x[p]
```

- 2: $r \leftarrow 1$
- 3: while $2^r \le p$ do
- 4: **for** $id \mod 2^{\gamma} = 1$ **pardo**
- 5: $x[id] = x[id] + x[id + 2^{r-1}]$
- 6: $r \leftarrow r + 1$
- 7: return x[1]

The above is an EREW PRAM algorithm

On a CREW PRAM we could replace Line 4 by for $1 \le id \le p$ pardo

Algorithm 3 sum

7: return x[1]

```
1: // computes sum of x[1]...x[p]

2: r \leftarrow 1

3: while 2^r \le p do

4: for id \mod 2^r = 1 pardo

5: x[id] = x[id] + x[id + 2^{r-1}]

6: r \leftarrow r + 1
```

The above is an EREW PRAM algorithm.

On a CREW PRAM we could replace Line 4 by for $1 \le id \le p$ pardo

Algorithm 3 sum

```
1: // computes sum of x[1]...x[p]
2: r \leftarrow 1
3: while 2^r \le p do
4: for id \mod 2^r = 1 pardo
5: x[id] = x[id] + x[id + 2^{r-1}]
6: r \leftarrow r + 1
7: return x[1]
```

The above is an EREW PRAM algorithm.

On a CREW PRAM we could replace Line 4 by **for** $1 \le id \le p$ **pardo**

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating x[i] is proportional to the bit-length of the largest number that is ever being stored in x[i])
 - in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronization is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development
- model is good for lower bounds

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating x[i] is proportional to the bit-length of the largest number that is ever being stored in x[i])
 - in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronization is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development
- model is good for lower bounds

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating x[i] is proportional to the bit-length of the largest number that is ever being stored in x[i])
 - in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronziation is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development
- model is good for lower bounds

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating x[i] is proportional to the bit-length of the largest number that is ever being stored in x[i])
 - in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronziation is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development
- model is good for lower bounds

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating x[i] is proportional to the bit-length of the largest number that is ever being stored in x[i])
 - in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronziation is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development
- model is good for lower bounds

- similar to a RAM we either need to restrict the size of values that can be stored in registers, or we need to have a non-uniform cost model for doing a register manipulation (cost for manipulating x[i] is proportional to the bit-length of the largest number that is ever being stored in x[i])
 - in this lecture: uniform cost model but we are not exploiting the model
- global shared memory is very unrealistic in practise as uniform access to all memory locations does not exist
- global synchronziation is very unrealistic; in real parallel machines a global synchronization is very costly
- model is good for understanding basic parallel mechanisms/techniques but not for algorithm development
- model is good for lower bounds

- interconnection network represented by a graph G = (V, E)
- ightharpoonup each $v \in V$ represents a processor
- ▶ an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v
- network is asynchronous
- all coordination/communication has to be done by explicit message passing

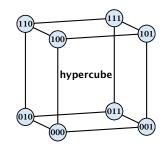
- interconnection network represented by a graph G = (V, E)
- each $v \in V$ represents a processor
- ▶ an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v
- network is asynchronous
- all coordination/communication has to be done by explicit message passing

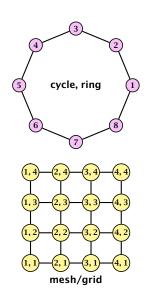
- interconnection network represented by a graph G = (V, E)
- each $v \in V$ represents a processor
- ▶ an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v
- network is asynchronous
- all coordination/communication has to be done by explicit message passing

- interconnection network represented by a graph G = (V, E)
- each $v \in V$ represents a processor
- ▶ an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v
- network is asynchronous
- all coordination/communication has to be done by explicit message passing

- interconnection network represented by a graph G = (V, E)
- each $v \in V$ represents a processor
- ▶ an edge $\{u, v\} \in E$ represents a two-way communication link between processors u and v
- network is asynchronous
- all coordination/communication has to be done by explicit message passing

Typical Topologies





Computing the sum on a d-dimensional hypercube. Note that $x[0]...x[2^d-1]$ are stored at the individual nodes.

Processors are numbered consecutively starting from 0

Computing the sum on a d-dimensional hypercube. Note that $x[0] \dots x[2^d-1]$ are stored at the individual nodes.

Processors are numbered consecutively starting from 0

Computing the sum on a d-dimensional hypercube. Note that $x[0] \dots x[2^d-1]$ are stored at the individual nodes.

Processors are numbered consecutively starting from $\boldsymbol{0}$

Computing the sum on a d-dimensional hypercube. Note that $x[0] \dots x[2^d-1]$ are stored at the individual nodes.

Processors are numbered consecutively starting from $\boldsymbol{0}$

```
Algorithm 4 sum
1: // computes sum of x[0]...x[2^d-1]
2: r \leftarrow 1
3: while 2^r \le 2^d do //p = 2^d
   if id mod 2^r = 0 then
4:
             temp \leftarrow receive(id + 2^{r-1})
5:
            x[id] = x[id] + temp
6:
7: if id \mod 2^r = 2^{r-1} then
8:
            send(x[id], id - 2^{r-1})
9: r \leftarrow r + 1
10: if id = 0 then return x[id]
```

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic
- Difficult to develop and analyze algorithms as a lot of low level communication has to be dealt with
- Results only hold for one specific topology and cannot be generalized easily

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic
- Difficult to develop and analyze algorithms as a lot of low level communication has to be dealt with
- Results only hold for one specific topology and cannot be generalized easily

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic
- Difficult to develop and analyze algorithms as a lot of low level communication has to be dealt with
- Results only hold for one specific topology and cannot be generalized easily

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic
- Difficult to develop and analyze algorithms as a lot of low level communication has to be dealt with
- Results only hold for one specific topology and cannot be generalized easily

- One has to ensure that at any point in time there is at most one active communication along a link
- There also exist synchronized versions of the model, where in every round each link can be used once for communication
- In particular the asynchronous model is quite realistic
- Difficult to develop and analyze algorithms as a lot of low level communication has to be dealt with
- Results only hold for one specific topology and cannot be generalized easily

Suppose that we can solve an instance of a problem with size n with P(n) processors and time T(n).

We call $C(n) = T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

- P(n) processors and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n)/p)$ time for any number $p \leq P(n)$ processors
- O(C(n)/v + T(n)) for any number v of processors

Suppose that we can solve an instance of a problem with size n with P(n) processors and time T(n).

We call $C(n) = T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

- P(n) processors and time O(T(n))
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- O(C(n)/n) time for any number n < P(n) nancessors
- $\mathcal{O}(C(n)/p+T(n))$ for any number p of processors

Suppose that we can solve an instance of a problem with size n with P(n) processors and time T(n).

We call $C(n) = T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

Suppose that we can solve an instance of a problem with size n with P(n) processors and time T(n).

We call $C(n) = T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

- ▶ P(n) processors and time O(T(n))
- \triangleright $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n)/p)$ time for any number $p \leq P(n)$ processors
- $\triangleright \mathcal{O}(\mathcal{C}(n)/p + T(n))$ for any number p of processors

Suppose that we can solve an instance of a problem with size n with P(n) processors and time T(n).

We call $C(n) = T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

- ▶ P(n) processors and time O(T(n))
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- \triangleright $\mathcal{O}(C(n)/p)$ time for any number $p \le P(n)$ processors
- \triangleright $\mathcal{O}(C(n)/p + T(n))$ for any number p of processors

Suppose that we can solve an instance of a problem with size n with P(n) processors and time T(n).

We call $C(n) = T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

- ▶ P(n) processors and time O(T(n))
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- ▶ $\mathcal{O}(C(n)/p)$ time for any number $p \le P(n)$ processors
- $\triangleright \mathcal{O}(C(n)/p + T(n))$ for any number p of processors

Suppose that we can solve an instance of a problem with size n with P(n) processors and time T(n).

We call $C(n) = T(n) \cdot P(n)$ the time-processor product or the cost of the algorithm.

The following statements are equivalent

- ▶ P(n) processors and time O(T(n))
- $\mathcal{O}(C(n))$ cost and time $\mathcal{O}(T(n))$
- $\mathcal{O}(C(n)/p)$ time for any number $p \le P(n)$ processors
- $\mathcal{O}(C(n)/p + T(n))$ for any number p of processors

Suppose we have a PRAM algorithm that takes time T(n) and work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$\lfloor W(n)/p \rfloor + T(n)$$

parallel steps on p processors.

Idea:

 $W_i(n)$ denotes operations in parallel step $i, 1 \le i \le T(n)$ simulate each step in $\{W_i(n)\}_{\mathcal{D}}$ parallel steps

uniem we nave

 $\sum_{i} |W_{i}(n)/p| \le \sum_{i} (|W_{i}(n)/p| + 1) \le |W(n)/p| + T(n)$

Suppose we have a PRAM algorithm that takes time T(n) and work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$\lfloor W(n)/p \rfloor + T(n)$$

parallel steps on p processors.

Suppose we have a PRAM algorithm that takes time T(n) and work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$\lfloor W(n)/p\rfloor + T(n)$$

parallel steps on p processors.

Suppose we have a PRAM algorithm that takes time T(n) and work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$\lfloor W(n)/p \rfloor + T(n)$$

parallel steps on p processors.

- ▶ $W_i(n)$ denotes operations in parallel step i, $1 \le i \le T(n)$
- lacktriangle simulate each step in $|W_i(n)/p|$ parallel steps
- then we have

$$\sum_{i} \lceil W_{i}(n)/p \rceil \leq \sum_{i} \left(\lfloor W_{i}(n)/p \rfloor + 1 \right) \leq \lfloor W(n)/p \rfloor + T(n)$$

Suppose we have a PRAM algorithm that takes time T(n) and work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$\lfloor W(n)/p \rfloor + T(n)$$

parallel steps on p processors.

- ▶ $W_i(n)$ denotes operations in parallel step i, $1 \le i \le T(n)$
- simulate each step in $\lceil W_i(n)/p \rceil$ parallel steps
- then we have

$$\sum_{i} \lceil W_{i}(n)/p \rceil \leq \sum_{i} \left(\lfloor W_{i}(n)/p \rfloor + 1 \right) \leq \lfloor W(n)/p \rfloor + T(n)$$

Suppose we have a PRAM algorithm that takes time T(n) and work W(n), where work is the total number of operations.

We can nearly always obtain a PRAM algorithm that uses time at most

$$\lfloor W(n)/p \rfloor + T(n)$$

parallel steps on p processors.

- ▶ $W_i(n)$ denotes operations in parallel step i, $1 \le i \le T(n)$
- simulate each step in $\lceil W_i(n)/p \rceil$ parallel steps
- then we have

$$\sum_i \lceil W_i(n)/p \rceil \leq \sum_i \left(\lfloor W_i(n)/p \rfloor + 1 \right) \leq \lfloor W(n)/p \rfloor + T(n)$$

Why nearly always?

We need to assign processors to operations

every processor p_1 needs to know whether it should be seen

In case it is active it needs to know which operations to

perform

design algorithms for an arbitrary number of processors keep total time and work low

Why nearly always?

We need to assign processors to operations.

- every processor p_{ℓ} needs to know whether it should be active
- in case it is active it needs to know which operations to

design algorithms for an arbitrary number of processors keep total time and work low

Why nearly always?

We need to assign processors to operations.

- every processor p_i needs to know whether it should be active
- in case it is active it needs to know which operations to perform

design algorithms for an arbitrary number of processors; keep total time and work low

Why nearly always?

We need to assign processors to operations.

- every processor p_i needs to know whether it should be active
- in case it is active it needs to know which operations to perform

design algorithms for an arbitrary number of processors; keep total time and work low

Why nearly always?

We need to assign processors to operations.

- every processor p_i needs to know whether it should be active
- in case it is active it needs to know which operations to perform

design algorithms for an arbitrary number of processors; keep total time and work low

Suppose the optimal sequential running time for a problem is $T^*(n)$.

Suppose the optimal sequential running time for a problem is $T^*(n)$.

We call a PRAM algorithm for the same problem work optimal if its work W(n) fulfills

$$W(n) = \Theta(T^*(n))$$

Suppose the optimal sequential running time for a problem is $T^*(n)$.

We call a PRAM algorithm for the same problem work optimal if its work W(n) fulfills

$$W(n) = \Theta(T^*(n))$$

$$S_p(n)$$

Suppose the optimal sequential running time for a problem is $T^*(n)$.

We call a PRAM algorithm for the same problem work optimal if its work W(n) fulfills

$$W(n) = \Theta(T^*(n))$$

$$S_p(n) = \Omega\left(\frac{T^*(n)}{T^*(n)/p + T(n)}\right)$$

Suppose the optimal sequential running time for a problem is $T^*(n)$.

We call a PRAM algorithm for the same problem work optimal if its work W(n) fulfills

$$W(n) = \Theta(T^*(n))$$

$$S_p(n) = \Omega\left(\frac{T^*(n)}{T^*(n)/p + T(n)}\right) = \Omega\left(\frac{pT^*(n)}{T^*(n) + pT(n)}\right)$$

Suppose the optimal sequential running time for a problem is $T^*(n)$.

We call a PRAM algorithm for the same problem work optimal if its work W(n) fulfills

$$W(n) = \Theta(T^*(n))$$

$$S_p(n) = \Omega\left(\frac{T^*(n)}{T^*(n)/p + T(n)}\right) = \Omega\left(\frac{pT^*(n)}{T^*(n) + pT(n)}\right) = \Omega(p)$$

Suppose the optimal sequential running time for a problem is $T^*(n)$.

We call a PRAM algorithm for the same problem work optimal if its work W(n) fulfills

$$W(n) = \Theta(T^*(n))$$

$$S_p(n) = \Omega\left(\frac{T^*(n)}{T^*(n)/p + T(n)}\right) = \Omega\left(\frac{pT^*(n)}{T^*(n) + pT(n)}\right) = \Omega(p)$$

for
$$p = \mathcal{O}(T^*(n)/T(n))$$
.

This means by improving the time T(n), (while using same work) we improve the range of p, for which we obtain optimal speedup.

We call an algorithm worktime (WT) optimal if T(n) cannot be asymptotically improved by any work optimal algorithm.

This means by improving the time T(n), (while using same work) we improve the range of p, for which we obtain optimal speedup.

We call an algorithm worktime (WT) optimal if T(n) cannot be asymptotically improved by any work optimal algorithm.

Algorithm for computing the sum has work W(n) = O(n). optimal

 $T(n) = \mathcal{O}(\log n)$. Hence, we achieve an optimal speedup for $p = \mathcal{O}(n/\log n)$.

Algorithm for computing the sum has work W(n) = O(n). optimal

 $T(n) = \mathcal{O}(\log n)$. Hence, we achieve an optimal speedup for $p = \mathcal{O}(n/\log n)$.

Algorithm for computing the sum has work W(n) = O(n). optimal

 $T(n) = \mathcal{O}(\log n)$. Hence, we achieve an optimal speedup for $p = \mathcal{O}(n/\log n)$.

Algorithm for computing the sum has work W(n) = O(n). optimal

 $T(n) = \mathcal{O}(\log n)$. Hence, we achieve an optimal speedup for $p = \mathcal{O}(n/\log n)$.

When we differentiate between local and global memory we can analyze communication cost.

We define the communication cost of a PRAM algorithm as the worst-case traffic between the local memory of a processor and the global shared memory.

When we differentiate between local and global memory we can analyze communication cost.

We define the communication cost of a PRAM algorithm as the worst-case traffic between the local memory of a processor and the global shared memory.

When we differentiate between local and global memory we can analyze communication cost.

We define the communication cost of a PRAM algorithm as the worst-case traffic between the local memory of a processor and the global shared memory.

When we differentiate between local and global memory we can analyze communication cost.

We define the communication cost of a PRAM algorithm as the worst-case traffic between the local memory of a processor and the global shared memory.

Algorithm 5 MatrixMult(A, B, n)

- 1: **Input:** $n \times n$ matrix A and B; $n = 2^k$
- 2: Output: C = AB
- 3: for $1 \le i, j, \ell \le n$ pardo
- 4: $X[i,j,\ell] \leftarrow A[i,\ell] \cdot B[\ell,j]$
- 5: **for** $r \leftarrow 1$ **to** $\log n$
- 6: **for** $1 \le i, j \le n$; $\ell \mod 2^r = 1$ **pardo**
- 7: $X[i, j, \ell] \leftarrow X[i, j, \ell] + X[i, j, \ell + 2^{r-1}]$
- 8: for $1 \le i, j \le n$ pardo
- 9: $C[i,j] \leftarrow X[i,j,1]$

On n^3 processors this algorithm runs in time $\mathcal{O}(\log n)$ It uses n^3 multiplications and $\mathcal{O}(n^3)$ additions.


```
Algorithm 5 MatrixMult(A, B, n)
```

- 1: **Input:** $n \times n$ matrix A and B; $n = 2^k$
- 2: Output: C = AB
- 3: for $1 \le i, j, \ell \le n$ pardo

4:
$$X[i, j, \ell] \leftarrow A[i, \ell] \cdot B[\ell, j]$$

- 5: **for** $r \leftarrow 1$ **to** $\log n$
- 6: **for** $1 \le i, j \le n$; $\ell \mod 2^r = 1$ **pardo**

7:
$$X[i, j, \ell] \leftarrow X[i, j, \ell] + X[i, j, \ell + 2^{r-1}]$$

- 8: for $1 \le i, j \le n$ pardo
- 9: $C[i,j] \leftarrow X[i,j,1]$

On n^3 processors this algorithm runs in time $\mathcal{O}(\log n)$. It uses n^3 multiplications and $\mathcal{O}(n^3)$ additions.

Phase 1

 p_i computes $X[i,j,\ell]=A[i,\ell]\cdot B[\ell,j]$ for all $1\leq j,\ell\leq n$ n^2 time; n^2 communication for every processor

Phase 2 (round r) p_i updates $X[i,j,\ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3 p_i writes i-th row into C[i, j]'s n time; n communication

Phase 1

 p_i computes $X[i, j, \ell] = A[i, \ell] \cdot B[\ell, j]$ for all $1 \le j, \ell \le n$ n^2 time; n^2 communication for every processor

Phase 2 (round r) p_i updates $X[i,j,\ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3 p_i writes i-th row into C[i,j]'s n time; n communication

Phase 1

 p_i computes $X[i,j,\ell]=A[i,\ell]\cdot B[\ell,j]$ for all $1\leq j,\ell\leq n$ n^2 time; n^2 communication for every processor

Phase 2 (round r) p_i updates $X[i,j,\ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3 p_i writes i-th row into C[i,j]'s n time: n communication

Phase 1

 p_i computes $X[i,j,\ell] = A[i,\ell] \cdot B[\ell,j]$ for all $1 \le j,\ell \le n$ n^2 time; n^2 communication for every processor

Phase 2 (round r)

 p_i updates $X[i,j,\ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3

 p_i writes *i*-th row into C[i, j]'s.

Phase 1

 p_i computes $X[i,j,\ell]=A[i,\ell]\cdot B[\ell,j]$ for all $1\leq j,\ell\leq n$ n^2 time; n^2 communication for every processor

Phase 2 (round r)

 p_i updates $X[i, j, \ell]$ for all $1 \le j \le n$; $1 \le \ell \mod 2^r = 1$

Phase 3

 p_i writes i-th row into C[i, j]'s.

Phase 1

 p_i computes $X[i,j,\ell]=A[i,\ell]\cdot B[\ell,j]$ for all $1\leq j,\ell\leq n$ n^2 time; n^2 communication for every processor

Phase 2 (round r)

 p_i updates $X[i, j, \ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3

 p_i writes *i*-th row into C[i, j]'s.

Phase 1

 p_i computes $X[i,j,\ell]=A[i,\ell]\cdot B[\ell,j]$ for all $1\leq j,\ell\leq n$ n^2 time; n^2 communication for every processor

Phase 2 (round r)

 p_i updates $X[i, j, \ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3

 p_i writes i-th row into C[i, j]'s. n time: n communication

Phase 1

 p_i computes $X[i,j,\ell]=A[i,\ell]\cdot B[\ell,j]$ for all $1\leq j,\ell\leq n$ n^2 time; n^2 communication for every processor

Phase 2 (round r)

 p_i updates $X[i, j, \ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3

 p_i writes *i*-th row into C[i, j]'s.

n time; *n* communication

Phase 1

 p_i computes $X[i,j,\ell]=A[i,\ell]\cdot B[\ell,j]$ for all $1\leq j,\ell\leq n$ n^2 time; n^2 communication for every processor

Phase 2 (round r)

 p_i updates $X[i, j, \ell]$ for all $1 \le j \le n; 1 \le \ell \mod 2^r = 1$ $\mathcal{O}(n \cdot n/2^r)$ time; no communication

Phase 3

 p_i writes i-th row into C[i, j]'s. n time; n communication

Split matrix into blocks of size $n^{2/3} \times n^{2/3}$.

$A_{1,1}$ $A_{1,2}$ $A_{1,3}$ $A_{1,4}$	$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$		$C_{1,1}$	C _{1,2}	C _{1,3}	$C_{1,4}$
$A_{2,1}$ $A_{2,2}$ $A_{2,3}$ $A_{2,4}$	$B_{2,1}$	B _{2,2}	$B_{2,3}$	$B_{2,4}$	_	$C_{2,1}$	C _{2,2}	$C_{2,3}$	$C_{2,4}$
$A_{3,1}$ $A_{3,2}$ $A_{3,3}$ $A_{3,4}$	$B_{3,1}$	B _{3,2}	$B_{3,3}$	$B_{3,4}$	_	C _{3,1}	$C_{3,2}$	$C_{3,3}$	$C_{3,4}$
A _{4,1} A _{4,2} A _{4,3} A _{4,4}	B _{4,1}	B _{4,2}	B _{4,3}	B _{4,4}		$C_{4,1}$	$C_{4,2}$	$C_{4,3}$	$C_{4,4}$

Note that $C_{i,j} = \sum_{\ell} A_{i,\ell} B_{\ell,j}$.

Now we have the same problem as before but $n'=n^{1/3}$ and a single multiplication costs time $\mathcal{O}((n^{2/3})^3)=\mathcal{O}(n^2)$. An addition costs $n^{4/3}$.

```
work for multiplications: \mathcal{O}(n^2 \cdot (n')^3) = \mathcal{O}(n^3)
work for additions: \mathcal{O}(n^{4/3} \cdot (n')^3) = \mathcal{O}(n^3)
time: \mathcal{O}(n^2) + \log n' \cdot \mathcal{O}(n^{4/3}) = \mathcal{O}(n^2)
```

Split matrix into blocks of size $n^{2/3} \times n^{2/3}$.

Note that $C_{i,j} = \sum_{\ell} A_{i,\ell} B_{\ell,j}$.

Now we have the same problem as before but $n'=n^{1/3}$ and a single multiplication costs time $\mathcal{O}((n^{2/3})^3)=\mathcal{O}(n^2)$. An addition costs $n^{4/3}$.

```
work for multiplications: \mathcal{O}(n^2 \cdot (n')^3) = \mathcal{O}(n^3)
work for additions: \mathcal{O}(n^{4/3} \cdot (n')^3) = \mathcal{O}(n^3)
time: \mathcal{O}(n^2) + \log n' \cdot \mathcal{O}(n^{4/3}) = \mathcal{O}(n^2)
```

Split matrix into blocks of size $n^{2/3} \times n^{2/3}$.

Note that $C_{i,j} = \sum_{\ell} A_{i,\ell} B_{\ell,j}$.

Now we have the same problem as before but $n'=n^{1/3}$ and a single multiplication costs time $\mathcal{O}((n^{2/3})^3)=\mathcal{O}(n^2)$. An addition costs $n^{4/3}$.

```
work for multiplications: \mathcal{O}(n^2 \cdot (n')^3) = \mathcal{O}(n^3)
work for additions: \mathcal{O}(n^{4/3} \cdot (n')^3) = \mathcal{O}(n^3)
time: \mathcal{O}(n^2) + \log n' \cdot \mathcal{O}(n^{4/3}) = \mathcal{O}(n^2)
```

Split matrix into blocks of size $n^{2/3} \times n^{2/3}$.

$\begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \end{bmatrix}$	$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$		$C_{1,1}$	C _{1,2}	C _{1,3}	$C_{1,4}$
$A_{2,1}$ $A_{2,2}$ $A_{2,3}$ $A_{2,4}$	$B_{2,1}$	B _{2,2}	$B_{2,3}$	$B_{2,4}$	_	$C_{2,1}$	C _{2,2}	C _{2,3}	$C_{2,4}$
$A_{3,1}$ $A_{3,2}$ $A_{3,3}$ $A_{3,4}$	$B_{3,1}$	B _{3,2}	$B_{3,3}$	$B_{3,4}$	_	$C_{3,1}$	C _{3,2}	C _{3,3}	C _{3,4}
A _{4,1} A _{4,2} A _{4,3} A _{4,4}	B _{4,1}	B _{4,2}	B _{4,3}	B _{4,4}		$C_{4,1}$	C _{4,2}	C _{4,3}	C _{4,4}

Note that $C_{i,j} = \sum_{\ell} A_{i,\ell} B_{\ell,j}$.

Now we have the same problem as before but $n'=n^{1/3}$ and a single multiplication costs time $\mathcal{O}((n^{2/3})^3)=\mathcal{O}(n^2)$. An addition costs $n^{4/3}$.

work for multiplications: $\mathcal{O}(n^2 \cdot (n')^3) = \mathcal{O}(n^3)$ work for additions: $\mathcal{O}(n^{4/3} \cdot (n')^3) = \mathcal{O}(n^3)$ time: $\mathcal{O}(n^2) + \log n' \cdot \mathcal{O}(n^{4/3}) = \mathcal{O}(n^2)$

Split matrix into blocks of size $n^{2/3} \times n^{2/3}$.

$\begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} & A_{1,4} \end{bmatrix}$	$B_{1,1}$	$B_{1,2}$	$B_{1,3}$	$B_{1,4}$		$C_{1,1}$	C _{1,2}	C _{1,3}	$C_{1,4}$
$A_{2,1}$ $A_{2,2}$ $A_{2,3}$ $A_{2,4}$	$B_{2,1}$	B _{2,2}	$B_{2,3}$	$B_{2,4}$	_	$C_{2,1}$	C _{2,2}	C _{2,3}	$C_{2,4}$
$A_{3,1}$ $A_{3,2}$ $A_{3,3}$ $A_{3,4}$	$B_{3,1}$	B _{3,2}	$B_{3,3}$	$B_{3,4}$	_	$C_{3,1}$	C _{3,2}	C _{3,3}	C _{3,4}
A _{4,1} A _{4,2} A _{4,3} A _{4,4}	B _{4,1}	B _{4,2}	B _{4,3}	B _{4,4}		$C_{4,1}$	C _{4,2}	C _{4,3}	C _{4,4}

Note that $C_{i,j} = \sum_{\ell} A_{i,\ell} B_{\ell,j}$.

Now we have the same problem as before but $n'=n^{1/3}$ and a single multiplication costs time $\mathcal{O}((n^{2/3})^3)=\mathcal{O}(n^2)$. An addition costs $n^{4/3}$.

work for multiplications: $\mathcal{O}(n^2 \cdot (n')^3) = \mathcal{O}(n^3)$ work for additions: $\mathcal{O}(n^{4/3} \cdot (n')^3) = \mathcal{O}(n^3)$

Split matrix into blocks of size $n^{2/3} \times n^{2/3}$.

Note that $C_{i,j} = \sum_{\ell} A_{i,\ell} B_{\ell,j}$.

Now we have the same problem as before but $n'=n^{1/3}$ and a single multiplication costs time $\mathcal{O}((n^{2/3})^3)=\mathcal{O}(n^2)$. An addition costs $n^{4/3}$.

work for multiplications: $\mathcal{O}(n^2 \cdot (n')^3) = \mathcal{O}(n^3)$ work for additions: $\mathcal{O}(n^{4/3} \cdot (n')^3) = \mathcal{O}(n^3)$ time: $\mathcal{O}(n^2) + \log n' \cdot \mathcal{O}(n^{4/3}) = \mathcal{O}(n^2)$

The communication cost is only $\mathcal{O}(n^{4/3} \log n')$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Each entry has size $\mathcal{O}(n^{4/3})$

The algorithm exhibits less parallelism but still has optimum work/runtime for just n processors.

The communication cost is only $\mathcal{O}(n^{4/3} \log n')$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Each entry has size $\mathcal{O}(n^{4/3})$.

The algorithm exhibits less parallelism but still has optimum work/runtime for just n processors.

The communication cost is only $\mathcal{O}(n^{4/3} \log n')$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Each entry has size $\mathcal{O}(n^{4/3})$.

The algorithm exhibits less parallelism but still has optimum work/runtime for just n processors.

The communication cost is only $\mathcal{O}(n^{4/3} \log n')$ as a processor in the original problem touches at most $\log n$ entries of the matrix.

Each entry has size $\mathcal{O}(n^{4/3})$.

The algorithm exhibits less parallelism but still has optimum work/runtime for just n processors.

