
How do we detect whether the LP is unbounded?

Let Mmax = n22L′ be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint ctx ≥ Mmax + 1 and check for feasibility.

EADS II 8

© Harald Räcke 163

Ellipsoid Method
ñ Let K be a convex set.

ñ Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

ñ If center z ∈ K STOP.

ñ Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

ñ Shift hyperplane to contain
node z. H denotes half-
space that contains K.

ñ Compute (smallest)
ellipsoid E′ that
contains K ∩H.

ñ REPEAT

K

z

E

z′

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 164

Issues/Questions:

ñ How do you choose the first Ellipsoid? What is its volume?

ñ What if the polytop K is unbounded?

ñ How do you measure progress? By how much does the

volume decrease in each iteration?

ñ When can you stop? What is the minimum volume of a

non-empty polytop?

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 165

Definition 3

A mapping f : Rn → Rn with f(x) = Lx + t, where L is an

invertible matrix is called an affine transformation.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 166

Definition 4

A ball in Rn with center c and radius r is given by

B(c, r) = {x | (x − c)t(x − c) ≤ r2}
= {x |

∑
i
(x − c)2i /r2 ≤ 1}

B(0,1) is called the unit ball.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 167

Definition 5

An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L−1(f (x)− t).

f(B(0,1)) = {f(x) | x ∈ B(0,1)}
= {y ∈ Rn | L−1(y − t) ∈ B(0,1)}

= {y ∈ Rn | (y − t)tL−1tL−1(y − t) ≤ 1}
= {y ∈ Rn | (y − t)tQ−1(y − t) ≤ 1}

where Q = LLt is an invertible matrix.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 168

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄ĉc

E Ē̂E

a

ĉ ′̄c′c′

Ê′ Ē′E′ā̂a

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 169

The Easy Case

Ê′

e1

e2

ĉ′

ñ The new center lies on axis x1. Hence, ĉ′ = te1 for t > 0.

ñ The vectors e1, e2, . . . have to fulfill the ellipsoid constraint

with equality. Hence (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 170

The Easy Case

ñ The obtain the matrix Q̂′
−1

for our ellipsoid Ê′ note that Ê′

is axis-parallel.

ñ Let a denote the radius along the x1-axis and let b denote

the (common) radius for the other axes.

ñ The matrix

L̂′ =


a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b


maps the unit ball (via function f̂ ′(x) = L̂′x) to an

axis-parallel ellipsoid with radius a in direction x1 and b in

all other directions.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 171

The Easy Case

ñ As Q̂′ = L̂′L̂′t the matrix Q̂′
−1

is of the form

Q̂′
−1 =



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2



EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 172

The Easy Case

ñ (e1 − ĉ′)tQ̂′
−1
(e1 − ĉ′) = 1 gives


1− t

0
...

0


t

·



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2

 ·


1− t
0
...

0

 = 1

ñ This gives (1− t)2 = a2.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 173

The Easy Case

ñ For i ≠ 1 the equation (ei − ĉ′)tQ̂′
−1
(ei − ĉ′) = 1 gives



−t
1

0
...

0



t

·



1
a2 0 . . . 0

0 1
b2

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b2

 ·


−t
1

0
...

0

 = 1

ñ This gives t2
a2 + 1

b2 = 1, and hence

1
b2 = 1− t

2

a2 = 1− t2

(1− t)2 =
1− 2t
(1− t)2

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 174

Summary

So far we have

a = 1− t and b = 1− t√
1− 2t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 175

The Easy Case

We still have many choices for t:

Ê′

e1

e2

ĉ′

Choose t such that the volume of Ê′ is minimal!!!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 176

The Easy Case

We want to choose t such that the volume of Ê′ is minimal.

Lemma 6

Let L be an affine transformation and K ⊆ Rn. Then

vol(L(K)) = |det(L)| · vol(K) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 177

n-dimensional volume

e1

e2

e3

a1

a2

a3

|det
(
a1 a2 a3

)
|

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 178

The Easy Case

ñ We want to choose t such that the volume of Ê′ is minimal.

vol(Ê′) = vol(B(0,1)) · |det(L̂′)| ,

where Q̂′ = L̂′L̂′t.
ñ We have

L̂′
−1 =



1
a 0 . . . 0

0 1
b

. . .
...

...
. . .

. . . 0

0 . . . 0 1
b

 and L̂′ =


a 0 . . . 0

0 b
. . .

...
...

. . .
. . . 0

0 . . . 0 b


ñ Note that a and b in the above equations depend on t, by

the previous equations.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 179

The Easy Case

vol(Ê′) = vol(B(0,1)) · |det(L̂′)|
= vol(B(0,1)) · abn−1

= vol(B(0,1)) · (1− t) ·
(

1− t√
1− 2t

)n−1

= vol(B(0,1)) · (1− t)n
(
√

1− 2t)n−1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 180

The Easy Case

d vol(Ê′)
d t

= d
d t

(
(1− t)n

(
√

1− 2t)n−1

)
= 1

N2 ·
(
(−1) ·n(1− t)n−1 · (

√
1− 2t)n−1

−(n− 1)(
√

1− 2t)n−2 · 1

2
√

1− 2t
· (−2) · (1− t)n

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1

·
(
(n− 1)(1− t)−n(1− 2t)

)

= 1
N2 · (

√
1− 2t)n−3 · (1− t)n−1 ·

(
(n+ 1)t − 1

)

N
N = denominator

(−1) ·n(1− t)n−1

derivative of numerator

(1− t)n

(
√

1− 2t)n−1

denominator

(
√

1− 2t)n−1

(n− 1)(
√

1− 2t)n−2

outer derivative

(
√

1− 2t)n−1
√

1− 2t

√
1− 2t

1

2
√

1− 2t
· (−2)

inner derivative

√
1− 2t

(1− t)n
numerator

(1− t)n

1− 2t

1− t

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 181

The Easy Case

ñ We obtain the minimum for t = 1
n+1 .

ñ For this value we obtain

a = 1− t = n
n+ 1

and b = 1− t√
1− 2t

= n√
n2 − 1

To see the equation for b, observe that

b2 = (1− t)
2

1− 2t
=
(1− 1

n+1)
2

1− 2
n+1

=
(n
n+1)

2

n−1
n+1

= n2

n2 − 1

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 182

The Easy Case

Let γn = vol(Ê′)
vol(B(0,1)) = abn−1 be the ratio by which the volume

changes:

γ2
n =

(n
n+ 1

)2(n2

n2 − 1

)n−1

=
(
1− 1

n+ 1

)2(
1+ 1

(n− 1)(n+ 1)

)n−1

≤ e−2 1
n+1 · e

1
n+1

= e−
1
n+1

where we used (1+ x)a ≤ eax for x ∈ R and a > 0.

This gives γn ≤ e−
1

2(n+1) .

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 183

How to Compute the New Ellipsoid

ñ Use f−1 (recall that f = Lx + t is the affine transformation
of the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

ñ Use a rotation R−1 to rotate the unit ball such that the
normal vector of the halfspace is parallel to e1.

ñ Compute the new center ĉ′ and
the new matrix Q̂′ for this
simplified setting.

ñ Use the transformations
R and f to get the
new center c′ and
the new matrix Q′

for the original
ellipsoid E.

c̄ĉc

E Ē̂E

a

ĉ ′̄c′c′

Ê′ Ē′E′ā̂a

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 184

Our progress is the same:

e−
1

2(n+1) ≥ vol(Ê′)
vol(B(0,1))

= vol(Ê′)
vol(Ê)

= vol(R(Ê′))
vol(R(Ê))

= vol(Ē′)
vol(Ē)

= vol(f (Ē′))
vol(f (Ē))

= vol(E′)
vol(E)

Here it is important that mapping a set with affine function

f(x) = Lx + t changes the volume by factor det(L).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 185

The Ellipsoid Algorithm

How to Compute The New Parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx+ c;

The halfspace to be intersected: H = {x | at(x − c) ≤ 0};

f−1(H) = {f−1(x) | at(x − c) ≤ 0}
= {f−1(f (y)) | at(f (y)− c) ≤ 0}
= {y | at(f (y)− c) ≤ 0}
= {y | at(Ly + c − c) ≤ 0}
= {y | (atL)y ≤ 0}

This means ā = Lta.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 186

The Ellipsoid Algorithm

After rotating back (applying R−1) the normal vector of the

halfspace points in negative x1-direction. Hence,

R−1
(Lta
‖Lta‖

)
= −e1 ⇒ − Lta

‖Lta‖ = R · e1

Hence,

c̄′ = R · ĉ′ = R · 1
n+ 1

e1 = −
1

n+ 1
Lta
‖Lta‖

c′ = f(c̄′) = L · c̄′ + c

= − 1
n+ 1

L
Lta
‖Lta‖ + c

= c − 1
n+ 1

Qa√
atQa

For computing the matrix Q′ of the new ellipsoid we assume in

the following that Ê′, Ē′ and E′ refer to the ellispoids centered in

the origin.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 188

Recall that

Q̂′ =


a2 0 . . . 0

0 b2 . . .
...

...
. . .

. . . 0

0 . . . 0 b2


This gives

Q̂′ = n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
because for a = n/n+1 and b = n/

√
n2−1

b2 − b2 2
n+ 1

= n2

n2 − 1
− 2n2

(n− 1)(n+ 1)2

= n
2(n+ 1)− 2n2

(n− 1)(n+ 1)2
= n2(n− 1)
(n− 1)(n+ 1)2

= a2

9 The Ellipsoid Algorithm

Ē′ = R(Ê′)

= {R(x) | xtQ̂′−1
x ≤ 1}

= {y | (R−1y)tQ̂′
−1
R−1y ≤ 1}

= {y | yt(Rt)−1Q̂′
−1
R−1y ≤ 1}

= {y | yt(RQ̂′Rt︸ ︷︷ ︸
Q̄′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 190

9 The Ellipsoid Algorithm

Hence,

Q̄′ = RQ̂′Rt

= R · n2

n2 − 1

(
I − 2

n+ 1
e1et1

)
· Rt

= n2

n2 − 1

(
R · Rt − 2

n+ 1
(Re1)(Re1)t

)
= n2

n2 − 1

(
I − 2

n+ 1
LtaatL
‖Lta‖2

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 191

9 The Ellipsoid Algorithm

E′ = L(Ē′)

= {L(x) | xtQ̄′−1x ≤ 1}

= {y | (L−1y)tQ̄′−1L−1y ≤ 1}

= {y | yt(Lt)−1Q̄′−1L−1y ≤ 1}
= {y | yt(LQ̄′Lt︸ ︷︷ ︸

Q′

)−1y ≤ 1}

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 192

9 The Ellipsoid Algorithm

Hence,

Q′ = LQ̄′Lt

= L · n2

n2 − 1

(
I − 2

n+ 1
LtaatL
atQa

)
· Lt

= n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 193

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn
2: output: point x ∈ K or “K is empty”

3: Q ← ???

4: repeat

5: if c ∈ K then return c
6: else

7: choose a violated hyperplane a

8: c ← c − 1
n+ 1

Qa√
atQa

9: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)
10: endif

11: until ???

12: return “K is empty”

Repeat: Size of basic solutions

Lemma 7

Let P = {x ∈ Rn | Ax ≤ b} be a bounded polytop. Let 〈amax〉 be

the maximum encoding length of an entry in A,b. Then every

entry xj in a basic solution fulfills |xj| =
Dj
D with

Dj ,D ≤ 22n〈amax〉+2n log2 n.

In the following we use δ := 22n〈amax〉+2n log2 n.

Note that here we have P = {x | Ax ≤ b}. The previous lemmas

we had about the size of feasible solutions were slightly

different as they were for different polytopes.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 195

Repeat: Size of basic solutions

Proof:

Let Ā =
[
A −A

Im−A A

]
, b̄ =

(
b
−b

)
, be the matrix and right-hand

vector after transforming the system to standard form.

The determinant of the matrices ĀB and M̄j (matrix obt. when

replacing the j-th column of ĀB by b̄) can become at most

det(ĀB),det(M̄j) ≤ ‖ ~̀max‖2n

≤ (
√

2n · 2〈amax〉)2n ≤ 22n〈amax〉+2n log2 n ,

where ~̀max is the longest column-vector that can be obtained

after deleting all but 2n rows and columns from Ā.

This holds because columns from Im selected when going from

Ā to ĀB do not increase the determinant. Only the at most 2n
columns from matrices A and −A that Ā consists of contribute.

How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is

bounded; it is sufficient to consider basic solutions.

Every entry xi in a basic solution fulfills |xi| ≤ δ.

Hence, P is contained in the cube −δ ≤ xi ≤ δ.

A vector in this cube has at most distance R := √nδ from the

origin.

Starting with the ball E0 := B(0, R) ensures that P is completely

contained in the initial ellipsoid. This ellipsoid has volume at

most RnB(0,1) ≤ (nδ)nB(0,1).

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 197

When can we terminate?

Let P := {x | Ax ≤ b} with A ∈ Z and b ∈ Z be a bounded

polytop. Let 〈amax〉 be the encoding length of the largest entry

in A or b.

Consider the following polytope

Pλ :=
{
x | Ax ≤ b + 1

λ


1
...

1


}
,

where λ = δ2 + 1.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 198

Lemma 8

Pλ is feasible if and only if P is feasible.

⇐= : obvious!

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 199

=⇒:

Consider the polytops

P̄ =
{
x |

[
A −A

Im−A A

]
x =

(
b
−b

)
;x ≥ 0

}
and

P̄λ =
{
x |

[
A −A

Im−A A

]
x =

(
b
−b

)
+ 1
λ


1
...

1

 ;x ≥ 0
}
.

P is feasible if and only if P̄ is feasible, and Pλ feasible if and

only if P̄λ feasible.

P̄λ is bounded since Pλ and P are bounded.

Let Ā =
[
A −A

Im−A A

]
, and b̄ =

(
b
−b

)
.

P̄λ feasible implies that there is a basic feasible solution

represented by

xB = Ā−1
B b̄ +

1
λ
Ā−1
B


1
...

1


(The other x-values are zero)

The only reason that this basic feasible solution is not feasible

for P̄ is that one of the basic variables becomes negative.

Hence, there exists i with

(Ā−1
B b̄)i < 0 ≤ (Ā−1

B b̄)i +
1
λ
(Ā−1
B ~1)i

By Cramers rule we get

(Ā−1
B b̄)i < 0 =⇒ (Ā−1

B b̄)i ≤ −
1

det(ĀB)

and

(Ā−1
B ~1)i ≤ det(M̄j) ,

where M̄j is obtained by replacing the j-th column of ĀB by ~1.

However, we showed that the determinants of ĀB and M̄j can

become at most δ.

Since, we chose λ = δ2 + 1 this gives a contradiction.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 202

Lemma 9

If Pλ is feasible then it contains a ball of radius r := 1/δ3. This

has a volume of at least rnvol(B(0,1)) = 1
δ3n vol(B(0,1)).

Proof:

If Pλ feasible then also P . Let x be feasible for P .

This means Ax ≤ b.

Let ~̀with ‖ ~̀‖ ≤ r . Then

(A(x + ~̀))i = (Ax)i + (A~̀)i ≤ bi +Ai ~̀

≤ bi + ‖Ai‖ · ‖ ~̀‖ ≤ bi +
√
n · 2〈amax〉 · r

≤ bi +
√
n · 2〈amax〉

δ3 ≤ bi +
1

δ2 + 1
≤ bi +

1
λ

Hence, x + ~̀ is feasible for Pλ which proves the lemma.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 203

How many iterations do we need until the volume becomes too

small?

e−
i

2(n+1) · vol(B(0, R)) < vol(B(0, r))

Hence,

i > 2(n+ 1) ln
(vol(B(0, R))

vol(B(0, r))

)
= 2(n+ 1) ln

(
nnδn · δ3n

)
= 8n(n+ 1) ln(δ)+ 2(n+ 1)n ln(n)

= O(poly(n, 〈amax〉))

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 204

Algorithm 1 ellipsoid-algorithm

1: input: point c ∈ Rn, convex set K ⊆ Rn, radii R and r
2: with K ⊆ B(c,R), and B(x, r) ⊆ K for some x
3: output: point x ∈ K or “K is empty”

4: Q ← diag(R2, . . . , R2) // i.e., L = diag(R, . . . , R)
5: repeat

6: if c ∈ K then return c
7: else

8: choose a violated hyperplane a

9: c ← c − 1
n+ 1

Qa√
atQa

10: Q ← n2

n2 − 1

(
Q− 2

n+ 1
QaatQ
atQa

)
11: endif

12: until det(Q) ≤ r2n // i.e., det(L) ≤ rn
13: return “K is empty”

Separation Oracle:

Let K ⊆ Rn be a convex set. A separation oracle for K is an

algorithm A that gets as input a point x ∈ Rn and either

ñ certifies that x ∈ K,

ñ or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

ñ a guarantee that a ball of radius r is contained in K,

ñ an initial ball B(c,R) with radius R that contains K,

ñ a separation oracle for K.

The Ellipsoid algorithm requires O(poly(n) · log(R/r))
iterations. Each iteration is polytime for a polynomial-time

Separation oracle.

EADS II 9 The Ellipsoid Algorithm

© Harald Räcke 206

