
Ferienakademie, Sarntal 2010

Finding Satisfying Assignments by
Random Walk

Rolf Wanka, Erlangen

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

Overview

• Preliminaries

• A Randomized Polynomial-time Algorithm for 2-SAT

• A Randomized O(2n)-time Algorithm for 3-SAT

• A Randomized O((4/3)n)-time Algorithm for 3-SAT

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

Preliminaries (I)

Satifiability problem SAT: Given a Boolean formula Φ in Conjunctive
Normal Form (CNF) over n variables x1, . . . , xn and m clauses.

CNF = Conjunction of clauses;
Clause = Disjunction of literals;
Literal = variable or negation of variable

Question: Is there a truth assignment to the variables such that Φ
evalutes to TRUE ?

Example for n = 4 and m = 5:

Φ = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x̄3) ∧ (x4 ∨ x̄1)

Satisfied by
x1 := TRUE; x2 := TRUE; x3 := FALSE; x4 := TRUE

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

Preliminaries (II)

k ∈ IN: For k-SAT, Φ is restricted to that each clause has exaclty k
literals.

So,

Φ = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x̄3) ∧ (x4 ∨ x̄1)

is an instance of 2-SAT.

Time complexity:

SAT is NP-complete.

3-SAT is NP-complete

2-SAT is in P.

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized Polynomial-time Algorithm for 2-SAT (I)

2-SAT Algorithm (c ∈ IN being an arbitrary constant):

– Start with an arbitrary truth assignment;

– Repeat up to 2cn2 times, terminating if all clauses are satified

the following iteration:

• Choose an arbitrary clause C that is not satisfied;

• Choose uniformly at random one of the literals in C

and switch the value of its variable;

– If a valid truth assignment has been found, return YES

– Otherwise, return NO.

Theorem: Φ is satifiable ⇒ Pr(algo. returns YES)≥ 1−
1

2c

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized Polynomial-time Algorithm for 2-SAT (II)

Let S represent a satisfying assignment.

Ai: the truth assignment after the ith iteration.

Xi: number of variables in Ai with identical value in S

Algorithm terminates with YES if Xi = n.

We have

Pr(Xi+1 = 1 | Xi = 0) = 1

Pr(Xi+1 = j + 1 | Xi = j) ≥
1

2

Pr(Xi+1 = j − 1 | Xi = j) ≤
1

2

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized Polynomial-time Algorithm for 2-SAT (III)

Let S represent a satisfying assignment.

Ai: the truth assignment after the ith iteration.

Xi: number of variables in Ai with identical value in S

Algorithm terminates with YES if Xi = n.

We have

Pr(Xi+1 = 1 | Xi = 0) = 1

Pr(Xi+1 = j + 1 | Xi = j) =
1

2

Pr(Xi+1 = j − 1 | Xi = j) =
1

2

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized Polynomial-time Algorithm for 2-SAT (IV)

Graphical representation

0 1 j

1

. n

11/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

hj = expected no. of steps to reach n when starting from j

We have the system of equations:

hn = 0

hj = 1
2 · (hj−1 + hj+1) + 1 for j ∈ {1, . . . , n− 1}

h0 = h1 + 1

Its unique solution: hj = n2 − j2

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized Polynomial-time Algorithm for 2-SAT (V)

That means (if Φ is satisfiable, S the only valid assignment):

The expected number of iterations until the algorithm returns YES
is at most n2.

The algorithm executes 2cn2 iterations.
Divide the iterations into c segments Σ1, . . . ,Σc of 2n2 iterations each.
Let Zi be the number of iterations from the start of Σi until S is found.
Then by Markov’s inequality,

Pr(Zi ≥ 2n2) ≤
E[Zi]

2n2
≤

n2

2n2
=

1

2

⇒ Pr(algo. fails to find S) ≤
(
1
2

)c

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O(2n)-time Algorithm for 3-SAT (I)

First 3-SAT Algorithm:

– Start with an arbitrary truth assignment;
– Repeat up to ` times, terminating if all clauses are satified

the following iteration:
• Choose an arbitrary clause C that is not satisfied;
• Choose uniformly at random one of the literals in C

and switch the value of its variable;
– If a valid truth assignment has been found, return YES
– Otherwise, return NO.

Theorem: Φ is satifiable ⇒ The expected no. ` of iterations to find
a valid truth assignment is Θ(2n).

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O(2n)-time Algorithm for 3-SAT (II)

Graphical representation assuming satisfying assignment S and count-
ing the “correct” variables

0 1 j

1

. n

12/3

1/3

2/3 2/3

1/3

2/3

1/3 1/3

hj = expected no. of steps to reach n when starting from j

We have the system of equations:

hn = 0

hj = 2
3 · hj−1 + 1

3 · hj+1 + 1 for j ∈ {1, . . . , n− 1}
h0 = h1 + 1

Its unique solution: hj = 2n+2 − 2j+2 − 3(n− j)

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O(2n)-time Algorithm for 3-SAT (III)

Observations:

1. If A0 is chosen u. a. r, X0 follows a symmetric binomial distribution,

Pr(X0 = j) =
(n
j

)
·
(
1

2

)n

with E[X0] = 1
2n. I. e., there is an exponentially small but non-

negligible probability that A0 matches S in significantly more than
1
2n variables.

2. The algorithm is more likely to move towards 0 than towards n.

The longer we run, the more likely we have moved towards 0.

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O((4/3)n)-time Algorithm for 3-SAT (I)

Schöning’s 3-SAT Algorithm:

– Repeat up to ` times, terminating if all clauses are satified:

(a) Start with a truth assignment chosen u. a. r.; [Restart]

(b) Repeat the following up to 3n times terminating if

all clauses are satified:

(1) Choose an arbitrary clause C that is not satisfied;

(2) Choose uniformly at random one of the literals in C

and switch the value of its variable;

– If a valid truth assignment has been found, return YES

– Otherwise, return NO.

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O((4/3)n)-time Algorithm for 3-SAT (II)

1/3

0

2/3 2/3

1/3

2/3

1/31/3

2/3

−1. . .

2/3

1/3

n−j

The probability of exactly k moves down and k + j moves up in a

sequence of j + 2k moves:

(j + 2k

k

)
·
(
2

3

)k (1

3

)j+k

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O((4/3)n)-time Algorithm for 3-SAT (III)

qj = (lower bound on) the probability that Schöning’s algorithm
reaches n when it starts with an assignment with exactly j mis-
matches.

1/3

0

2/3 2/3

1/3

2/3

1/31/3

2/3

−1. . .

2/3

1/3

n−j n

1

1/3

So,

qj ≥ max
k∈{0,...,j}

(j + 2k

k

)
·
(
2

3

)k (1

3

)j+k

In particular,

qj ≥
(3j

j

)
·
(
2

3

)j (1

3

)2j

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O((4/3)n)-time Algorithm for 3-SAT (IV)

By Stirling’s Formula:

(3j

j

)
=

(3j)!

j! · (2j)!
≥

√
2π(3j)

4
√

2πj ·
√

2π(2j)
·
(
3j

e

)3j
·
(

e

2j

)2j

·
(
e

j

)j

=

√
3

8
√

π︸ ︷︷ ︸
=:a

·
1
√

j
·
(
27

4

)j

So,

qj ≥ a ·
1
√

j
·
1

2j

and q0 = 1.

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

A Randomized O((4/3)n)-time Algorithm for 3-SAT (V)

Let q denote the probability that Schöning’s algorithm reaches n in

3n steps.

q ≥
n∑

j=0

Pr(X0 = n− j) · qj

≥
1

2n
+

n∑
j=1

(n
j

) (1

2

)n
· a ·

1
√

j
·
1

2j

≥
a
√

n
·
(
3

4

)n

Hence, the expected overall number of assignments tried is 1/q =

O(
√

n · (4/3)n) = o(1.33333334n).

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

Further Results

Iwama/Tamaki & Rolf: O(1.32216n)

Schmitt/W.: O(1.322030n)

Algorithm is a hybrid (running also the other known algorithms) that

also swaps from time to time all values of the variables.

Lehrstuhl für Informatik 12
Hardware-Software-Co-Design

