Finding Satisfying Assignments by Random Walk

Rolf Wanka, Erlangen

Friedrich-Alexander-Universität Erlangen-Nürnberg

- Preliminaries
- A Randomized Polynomial-time Algorithm for 2-SAT
- A Randomized $O(2^n)$ -time Algorithm for 3-SAT
- A Randomized $O((4/3)^n)$ -time Algorithm for 3-SAT

Preliminaries (I)

Satifiability problem SAT: Given a Boolean formula Φ in Conjunctive Normal Form (CNF) over n variables x_1, \ldots, x_n and m clauses.

CNF = Conjunction of clauses; Clause = Disjunction of literals; Literal = variable or negation of variable

Question: Is there a truth assignment to the variables such that Φ evalutes to TRUE?

Example for n = 4 and m = 5:

$$\Phi = (x_1 \vee \bar{x}_2) \land (\bar{x}_1 \vee \bar{x}_3) \land (x_1 \vee x_2) \land (x_4 \vee \bar{x}_3) \land (x_4 \vee \bar{x}_1)$$

Satisfied by

 $x_1 := \mathsf{TRUE}; x_2 := \mathsf{TRUE}; x_3 := \mathsf{FALSE}; x_4 := \mathsf{TRUE}$

Friedrich-Alexander-Universität Erlangen-Nürnberg

 $k \in IN$: For k-SAT, Φ is restricted to that each clause has exacled k literals.

So,

 $\Phi = (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_3) \wedge (x_1 \vee x_2) \wedge (x_4 \vee \bar{x}_3) \wedge (x_4 \vee \bar{x}_1)$ is an instance of 2-SAT.

Time complexity:

SAT is NP-complete.

3-SAT is NP-complete

2-SAT is in P.

Friedrich-Alexander-Universität Erlangen-Nürnberg

2-SAT Algorithm ($c \in \mathbb{IN}$ being an arbitrary constant):

- Start with an arbitrary truth assignment;
- Repeat up to $2cn^2$ times, terminating if all clauses are satified the following iteration:
 - Choose an arbitrary clause C that is not satisfied;
 - Choose uniformly at random one of the literals in C and switch the value of its variable;
- If a valid truth assignment has been found, return $\ensuremath{\mathsf{YES}}$
- Otherwise, return NO.

Theorem: Φ is satifiable \Rightarrow Pr(algo. returns YES) $\ge 1 - \frac{1}{2^c}$

Let S represent a satisfying assignment.

 A_i : the truth assignment after the *i*th iteration.

 X_i : number of variables in A_i with identical value in S

Algorithm terminates with YES if $X_i = n$.

We have

$$\Pr(X_{i+1} = 1 \mid X_i = 0) = 1$$

$$\Pr(X_{i+1} = j + 1 \mid X_i = j) \ge \frac{1}{2}$$

$$\Pr(X_{i+1} = j - 1 \mid X_i = j) \le \frac{1}{2}$$

Friedrich-Alexander-Universität Erlangen-Nürnberg

Let S represent a satisfying assignment.

 A_i : the truth assignment after the *i*th iteration.

 X_i : number of variables in A_i with identical value in S

Algorithm terminates with YES if $X_i = n$.

We have

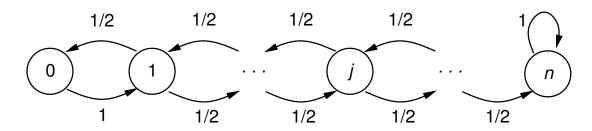
$$\Pr(X_{i+1} = 1 \mid X_i = 0) = 1$$

$$\Pr(X_{i+1} = j + 1 \mid X_i = j) = \frac{1}{2}$$

$$\Pr(X_{i+1} = j - 1 \mid X_i = j) = \frac{1}{2}$$

Friedrich-Alexander-Universität Erlangen-Nürnberg

Graphical representation



 $h_j = expected no.$ of steps to reach n when starting from j

We have the system of equations:

$$h_{n} = 0$$

$$h_{j} = \frac{1}{2} \cdot (h_{j-1} + h_{j+1}) + 1 \quad \text{for } j \in \{1, \dots, n-1\}$$

$$h_{0} = h_{1} + 1$$

Its unique solution: $h_j = n^2 - j^2$

Friedrich-Alexander-Universität Erlangen-Nürnberg

A Randomized Polynomial-time Algorithm for 2-SAT (V)

That means (if Φ is satisfiable, S the only valid assignment):

The expected number of iterations until the algorithm returns YES is at most n^2 .

The algorithm executes $2cn^2$ iterations.

Divide the iterations into c segments $\Sigma_1, \ldots, \Sigma_c$ of $2n^2$ iterations each. Let Z_i be the number of iterations from the start of Σ_i until S is found. Then by Markov's inequality,

$$\Pr(Z_i \ge 2n^2) \le \frac{E[Z_i]}{2n^2} \le \frac{n^2}{2n^2} = \frac{1}{2}$$

 \Rightarrow Pr(algo. fails to find S) $\leq \left(\frac{1}{2}\right)^{c}$

Friedrich-Alexander-Universität Erlangen-Nürnberg

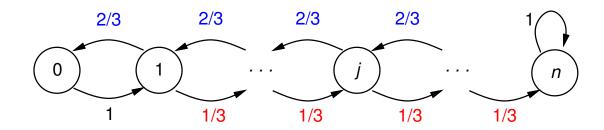
First 3-SAT Algorithm:

- Start with an arbitrary truth assignment;
- Repeat up to ℓ times, terminating if all clauses are satified the following iteration:
 - Choose an arbitrary clause C that is not satisfied;
 - Choose uniformly at random one of the literals in C and switch the value of its variable;
- If a valid truth assignment has been found, return YES
- Otherwise, return NO.

Theorem: Φ is satifiable \Rightarrow The expected no. ℓ of iterations to find a valid truth assignment is $\Theta(2^n)$.

A Randomized $O(2^n)$ -time Algorithm for 3-SAT (II)

Graphical representation assuming satisfying assignment S and counting the "correct" variables



 h_j = expected no. of steps to reach n when starting from j

We have the system of equations:

$$h_{n} = 0$$

$$h_{j} = \frac{2}{3} \cdot h_{j-1} + \frac{1}{3} \cdot h_{j+1} + 1 \quad \text{for } j \in \{1, \dots, n-1\}$$

$$h_{0} = h_{1} + 1$$

Its unique solution: $h_j = 2^{n+2} - 2^{j+2} - 3(n-j)$

Friedrich-Alexander-Universität Erlangen-Nürnberg

Observations:

1. If A_0 is chosen u. a. r, X_0 follows a symmetric binomial distribution,

$$\Pr(X_0 = j) = \binom{n}{j} \cdot \left(\frac{1}{2}\right)^n$$

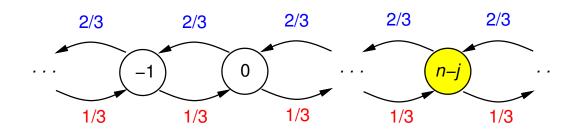
with $E[X_0] = \frac{1}{2}n$. I.e., there is an exponentially small but nonnegligible probability that A_0 matches S in significantly more than $\frac{1}{2}n$ variables.

2. The algorithm is more likely to move towards 0 than towards n. The longer we run, the more likely we have moved towards 0.

Schöning's 3-SAT Algorithm:

- Repeat up to ℓ times, terminating if all clauses are satified:
 - (a) Start with a truth assignment chosen u.a.r.; [Restart]
 - (b) Repeat the following up to 3n times terminating if all clauses are satified:
 - (1) Choose an arbitrary clause C that is not satisfied;
 - (2) Choose uniformly at random one of the literals in C and switch the value of its variable;
- If a valid truth assignment has been found, return YES
- Otherwise, return NO.

A Randomized $O((4/3)^n)$ -time Algorithm for 3-SAT (II)

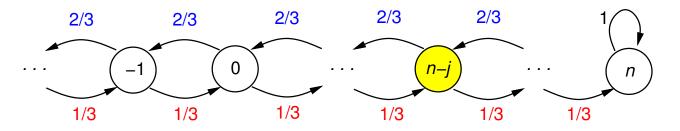


The probability of exactly k moves down and k + j moves up in a sequence of j + 2k moves:

$$\binom{j+2k}{k} \cdot \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{j+k}$$

A Randomized $O((4/3)^n)$ -time Algorithm for 3-SAT (III)

 q_i = (lower bound on) the probability that Schöning's algorithm reaches n when it starts with an assignment with exactly j mismatches.



$$q_j \ge \max_{k \in \{0,\dots,j\}} {j+2k \choose k} \cdot \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{j+k}$$

In particular,

$$q_j \ge {\binom{3j}{j}} \cdot \left(\frac{2}{3}\right)^j \left(\frac{1}{3}\right)^{2j}$$

Friedrich-Alexander-Universität **Erlangen-Nürnberg**

A Randomized $O((4/3)^n)$ -time Algorithm for 3-SAT (IV)

By Stirling's Formula:

$$\binom{3j}{j} = \frac{(3j)!}{j! \cdot (2j)!} \ge \frac{\sqrt{2\pi(3j)}}{4\sqrt{2\pi j} \cdot \sqrt{2\pi(2j)}} \cdot \left(\frac{3j}{e}\right)^{3j} \cdot \left(\frac{e}{2j}\right)^{2j} \cdot \left(\frac{e}{j}\right)^{j}$$
$$= \frac{\sqrt{3}}{\frac{8\sqrt{\pi}}{8} \cdot \frac{1}{\sqrt{j}}} \cdot \left(\frac{27}{4}\right)^{j}$$

$$q_j \ge a \cdot \frac{1}{\sqrt{j}} \cdot \frac{1}{2^j}$$

and $q_0 = 1$.

So,

Let q denote the probability that Schöning's algorithm reaches n in 3n steps.

$$q \geq \sum_{j=0}^{n} \Pr(X_0 = n - j) \cdot q_j$$

$$\geq \frac{1}{2^n} + \sum_{j=1}^{n} {n \choose j} \left(\frac{1}{2}\right)^n \cdot a \cdot \frac{1}{\sqrt{j}} \cdot \frac{1}{2^j}$$

$$\geq \frac{a}{\sqrt{n}} \cdot \left(\frac{3}{4}\right)^n$$

Hence, the expected overall number of assignments tried is 1/q = $O(\sqrt{n} \cdot (4/3)^n) = o(1.33333334^n).$

Iwama/Tamaki & Rolf: $O(1.32216^n)$

Schmitt/W.: $O(1.322030^n)$

Algorithm is a hybrid (running also the other known algorithms) that also swaps from time to time all values of the variables.

Friedrich-Alexander-Universität Erlangen-Nürnberg

