
Distance Problems in Networks - Theory and Praxis

Contraction Hierarchies

Mykola Protsenko

October 12, 2010

Abstract

Contraction Hierarchies (CH) is another hierarchical approach to a shortest path/shortest
distance problem. The main idea is to arrange all nodes according to their importance and
then iteratively contract them in this order, adding shortcuts to preserve shortest distances.
The queries are processed using modified bidirectional Dijkstra algorithm: the forward search
uses only edges going to more important nodes and the backward search the ones going to
less important nodes.

1



Contents

1 Introduction 3

2 Node Ordering 3

3 Contraction 4

4 Queries 5

5 Experiments 6

6 Conclusion 6

2



1 Introduction

The preprocessing step of Contraction Hierarchies routing algorithm consists of two parts:

• node ordering

• node contraction

After the first one we have all nodes sorted according to their ’importance’. Then the
hierarchy is constructed by contracting the nodes in this order. The contraction is performed
by deleting the node from the graph and adding some shortcuts to preserve shortest distances
in the remaining overlay graph.

The queries are processed with the modified version of bidirectional Dijkstra which at-
tempts to avoid less significant nodes by using the shortcuts added in the preprocessing step.
To achieve this the forward search uses only the edges going to more important nodes and
the backward search only those going to less important nodes so that the both search scopes
eventually meet in the node with the highest priority on a shortest path between source node
and target node.

In next sections we describe 3 important issues of Contraction Hierarchies: the node order-
ing, the contraction of nodes and the query processing. In the last section some experimental
results are shown.

2 Node Ordering

To arrange nodes in order of their importance we maintain a priority queue which minimum
element should be contracted next. The priority, or in other words, the importance of a
node is computed as a linear combination of several terms describing how contracting one
specific node will affect such important parameters as size of a graph, query search space,
query time etc. Although an ’optimal’ node ordering seems to be a hard problem, simple and
easy-to-compute local heuristics appear to work quite well on real road networks.

Next we present different terms, that can be used to compute priority of the node. Note
that the linear coefficients are important tuning parameter that could be used to tweak the
algorithm for specific problems.

• Edge difference. The Edge difference of a node v is defined as the number of shortcuts
needed when v is contracted minus the number of edges incident to v. Contracting the
nodes with least edge difference will make the resulting graph as small as possible.

However, the edge difference only is not sufficient to obtain good Contraction Hierarchies.
Experiments show that contracting nodes everywhere in a graph in an uniform way might be
not a bad idea. The next two terms represent the possible measurements of ’uniformity’ of
nodes contraction.

• Deleted Neighbors. This is simply the number of already contracted neighbors in-
cluding those reached via shortcuts.

• Voronoi Regions. The square root of the Voronoi Region size is used as a term for our
priority function.
The Voronoi Region of a node v is defined as a set of nodes that are closer to v then to
any other node of the graph:

R(v) := {u|d(v, u) < d(w, u) ∀w ∈ E}

Since the Voronoi Region of a contracted node will be ’eaten up’ by the Voronoi Regions
of its neighbors, the nodes with many nodes being contracted in their neighborhood will
have big Voronoi Regions. Thus contracting nodes with small value of this term will
provide uniformity of contraction.

3



To improve preprocessing time, the next term can be used in the priority function:

• Cost of contraction: the cost of making a decision, if and how many shortcuts are
needed when contracting specific node v.

We also can try to estimate, how contracting a node will affect the query times:

• Cost of query. The estimate Q(v) is to be the upper bound of the number of hops
on a path 〈s, .., v〉. Initially Q(v)=0 for all nodes. When node v is contracted, for each
neighbor u we set:

Q(u):=max{Q(u),Q(v)+1 }

It is clear, that contraction of a node may affect the priorities of other nodes. So additional
techniques are needed to deal with this problem.

• Lazy update: before contracting node v its priority function is evaluated again. If new
priority of v is greater then priority of the second smallest element of the queue, we
reinsert v. This actions are repeated until consistent minimum is found.

• We recompute the priorities of the neighbors of contracted node.

• It might be a good idea to recompute all priorities from time to time.

3 Contraction

In this section we take the process of node contraction under the scope.
Suppose we have an overlay graph G=(V’,E’) given and the next node to contract is v.

While contracting this node we have to add some shortcuts to replace unique shortest paths
going through v. It means, that for each u with (u, v) ∈ E′ and w with (v, w) ∈ E′ we
have to look for shortest distances in our overlay graph ignoring v. If the distance we found
d(u,v) > c(u,v)+c(v,w) then shortcut is needed and we add a new edge between u and w with
weight c(u,v)+c(v,w).

Figure 1: Contraction of a node.

Since the computation of exact value of the distance d(u,w) can be quite expensive, we
perform the shortest distance search (Dijkstra) with limited number of hops. In this case the
maximum number of hops is another tuning parameter: if we choose small hop limit, we will
have fast preprocessing but possibly slow query processing. On the other hand, the large hop
limit gives us smaller query time at a price of slower node contraction.

4



4 Queries

For query processing we split the contraction hierarchy CH=(V,E) (original nodes, original
edges + shortcuts) into:

• upward graph G↑ := (V,E↑) with edges going to nodes with higher priority:

E↑ := {(u, v) ∈ E : u < v}

• downward graph G↓ := (V,E↓) with edges going from nodes with higher priority:

E↓ := {(u, v) ∈ E : u > v}

Then the modified bidirectional version of Dijkstra is executed to compute a shortest
distance between start node s and target node t.

The forward search is performed in the upward graph and the backward search in the
downward graph. Note that unlike the ”classical” bidirectional Dijkstra, this search can not
be stopped when there is one node settled in both search scopes. So shortest distance is
computed as:

min{d(s,v)+d(v,t):v is settled in both searches}

The next Lemma proves correctness of this approach.

Lemma 4.1. d(s, t) = min{d(s, v) + d(v, t) : v is settled in both searches}

Proof. In other words, we have to show the existence of a shortest path P = 〈s, ..v, ..t〉 with
following properties:

• There is some node v - the node with highest priority in P.

• The first part of P, 〈s, ..v〉 goes in ascending priority.

• The second part of P, 〈v, ..t〉 - in descending priority.

Obviously, if a shortest path with this properties exists, it will be found by our modified
bidirectional Dijkstra query algorithm.

To prove the existence of such a path, we first assume the contrary: all existing shortest
paths between s and t have some node v in it, with both predecessor w and successor u in P
having priorities higher, then v, which violates the last two properties.

In this case, at a moment of contracting node v, both u and w would still be present in
current overlay graph, so we would either add a shortcut edge between those or there were a
path shorter or of equal length using only nodes with priorities higher then v.

This is a contradiction to our previous assumption about shortest paths.

Since a shortest path found by our algorithm may contain also shortcut edges, we need
some special technique to ”extract” a shortest path that uses only edges from input graph.
The main observation is that each shortcut edge bypasses exactly one node, so if we store this
node together with the shortcut we will be able to unpack paths recursively.

Note that if the extraction of shortest paths for some reason is not required, we can reduce
the space consumption of our algorithm by storing each edge (u,v) only in the node with
minimum priority min{u,v}.

5



5 Experiments

The Contraction Hierarchies algorithm was tested on a road network of Western Europe with
over 18 M nodes and over 42 M directed edges. The table below shows the performance of
various variants of Contraction Hierarchies (especially node ordering) executed on the test
network. The last line gives corresponding data for Highway Node Routing.

Node ordering heuristics:

• E = edge difference

• D = deleted neighbors

• S = search space size

• V =
√

Voronoi region size

• Q = upper bound on edges in search paths

• L = limit search space on weight calculation

• W = relative betweenness

• digits: hop limit

method node ordering [s] hierarchy construction [s] query [µs]
E 13010 1739 670
ED 7746 1062 183
ES 5355 123 245
ED5 634 98 224
EDS5 652 99 213
EDS1235 545 57 223
EDSQ1235 591 64 211
EDSQL 1648 199 173
EVSQL 1627 170 159
EDSQWL 1629 199 163
EVSQWL 1734 180 154
HNR 594 203 802

As we can see, even using only simple heuristics (for instance, edge difference and deleted
neighbors) we get much better query times then Highway Node Routing.

6 Conclusion

Contraction Hierarchies are simple and efficient approach to a shortest path/shortest distance
problem.

It can be very useful, if some/all edge weights may change from time to time in our network.
The reason for this is, that the preprocessing consists of two main steps: node ordering and
node contraction. The algorithm is correct for all node orderings. So if the weights have being
changed, only contraction step needs to be performed again. In many application scenarios
the important nodes remain important even after the change of weights (Example: switching
from driving time to driving distance), so even without reordering the nodes we will get fast
query processing.

Contraction Hierarchies can also be used as a part of some more sophisticated routing
algorithm, for instance as preprocessing routine in Transit-Node Routing.

6



References

[Del] Daniel Delling. Algorithmen fuer Routenplanung - Vorlesung 5.

[RGD08] Dominik Schultes Robert Geisberger, Peter Sanders and Daniel Delling. Contraction
Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. 2008.

7


	Introduction
	Node Ordering
	Contraction
	Queries
	Experiments
	Conclusion

