TRANSIT
 Ultrafast Shortest-Path Queries with Linear-Time Preprocessing

Ferienakademie im Sarntal - Course 2
Distance Problems: Theory and Praxis

Andreas Heider

Fakultät für Informatik
TU München

Outline

(1) Introduction
(2) Transit Node Routing

The key observation
Formalization
Computing the Set of Transit Nodes
Computing the Distance Tables
Shortest-distance queries
Shortest-path queries (with edges)
Local queries
Multi-Level Grid
(3) Conclusions

Overview

Goal

- Faster Shortest-Path Queries
- Application: Navigation Systems

Overview

Goal

- Faster Shortest-Path Queries
- Application: Navigation Systems

Example

- US Road Network: 24 million nodes, 58 million edges
- Traditional Dijkstra too slow: worst case $O(m+n \operatorname{logn})$
- Query time:
- Dijkstra: seconds
- Best other algorithms: milliseconds

Overview

Goal

- Faster Shortest-Path Queries
- Application: Navigation Systems

Example

- US Road Network: 24 million nodes, 58 million edges
- Traditional Dijkstra too slow: worst case $O(m+n \operatorname{logn})$
- Query time:
- Dijkstra: seconds
- Best other algorithms: milliseconds
- Do we really need even faster algorithms?
- Yes: Web services, Traffic simulation, etc.

Overview

Solution

- Split the work into a preprocessing step and fast queries
- Considerations: Query time, preprocessing time, space usage, etc.

Overview

Solution

- Split the work into a preprocessing step and fast queries
- Considerations: Query time, preprocessing time, space usage, etc.

Special properties of road networks

- Optimize for the special structure of the problem
- Nodes have a small degree (US road network: 2.4)
- There is a hierachy of more and more important roads
- The graph is relatively static
- Much more...

The key observation

- When travelling far there are only a few points you will leave your neighborhood through
- Those will be called Transit Nodes

Vierkirchen - Amsterdam

Vierkirchen - Berlin

Vierkirchen - Prague

Vierkirchen - Amsterdam/Berlin

Vierkirchen - Prague

Altomünster - Prague

Haimhausen - Prague

The key observation

- When travelling far there are only a few points you will leave your neighborhood through
- Those will be called Transit Nodes

Algorithm outline

- Precomputation step:
- For each neighborhood: find a set of Transit Nodes
- Calculate distance from each node to its neighborhoods Transit Nodes
- Run APSP (distances) between all Transit Nodes
- Shortest distance query: Find $t 1, t 2$ so that $\operatorname{dist}(\operatorname{src}, t 1)+\operatorname{dist}(t 1, t 2)+\operatorname{dist}(t 2, \operatorname{trg})$ is minimal

Formalization

How to implement 'far'

- Some metric is needed to determine wether a trip is far enough
- One possibility: Subdivide the map into a grid of cells

Formalization

How to implement 'far'

- Some metric is needed to determine wether a trip is far enough
- One possibility: Subdivide the map into a grid of cells
- A trip is long enough if the start and destination points are more
 than 4 cells apart
- To determine: best grid size

Formalization

How to implement 'far'

- Some metric is needed to determine wether a trip is far enough
- One possibility: Subdivide the map into a grid of cells
- A trip is long enough if the start and destination points are more than 4 cells apart
- To determine: best grid size

Formalization

Definitions

- C: The cell for which we want to compute the Transit Nodes

Formalization

Definitions

- C: The cell for which we want to compute the Transit Nodes
- Souter: Square with C at it's center, everything outside is 'far away'

Formalization

Definitions

- C: The cell for which we want to compute the Transit Nodes
- $S_{\text {outer }}$: Square with C at it's center, everything outside is 'far away'
- $S_{\text {inner }}$: Between C and $S_{\text {outer, }}$, all Transit Nodes cross $S_{\text {inner }}$

Formalization

Definitions

- $E_{C / i n n e r / o u t e r}:$ Edges that cross a square

Formalization

Definitions

- $E_{C / i n n e r / o u t e r}:$ Edges that cross a square
- $V_{C / i n n e r / o u t e r}$: For each edge in E : pick the node with the lower id

Formalization

Definitions

- $E_{C / i n n e r / o u t e r}:$ Edges that cross a square
- $V_{C / i n n e r / o u t e r: ~}$ For each edge in E : pick the node with the lower id
- All far trips starting inside C always first pass a node in V_{C}, then $V_{\text {inner }}$, then $V_{\text {outer }}$

Naive approach

Computing the Transit Nodes

- For each cell: Compute all shortest paths between V_{C} and $V_{\text {outer }}$
- Mark all nodes in $V_{\text {inner }}$ that lie on such a path, these are the Transit Nodes
- All paths starting inside V_{C} and ending outside $V_{\text {outer }}$ will pass one of the Transit Nodes

- This requires a shortest paths run with a radius of 5 cells

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Sweep-line algorithm

- A line is moved across the whole grid
- All roads that cross the line get processed
- When the line reaches the other end, the solution is available

Sweep-line algorithm

Computing the Transit Nodes

- For all roads intersecting the sweep line:
- Choose one endpoint v
- $C_{\text {left }}, C_{\text {right }}$: Cells two grid units left/right
- Find all boundary nodes v_{L}, v_{R} on $C_{\text {left }}, C_{\text {right }}$
- Run Dijkstra starting at v until we know the distance $d\left(v, v_{L / R}\right)$ for all boundary nodes
- To do this we mostly need to
 look at nodes no more than 3 cells away

Sweep-line algorithm

Computing the Transit Nodes

- We now know all $d\left(v, v_{L / R}\right)$
- Look at all combinations of boundary nodes in $\left(v_{L}, v_{R}\right)$ with a vertical distance of $<=4$
- And determine v so that $d\left(v_{L}, v\right)+d\left(v, v_{R}\right)$ is minimal
- This v is a Transit Node for the cells containing v_{L} and v_{R}

Sweep-line algorithm

Computing the Transit Nodes

- We now know all $d\left(v, v_{L / R}\right)$
- Look at all combinations of boundary nodes in $\left(v_{L}, v_{R}\right)$ with a vertical distance of $<=4$
- And determine v so that $d\left(v_{L}, v\right)+d\left(v, v_{R}\right)$ is minimal
- This v is a Transit Node for the cells containing v_{L} and v_{R}
- After one horizontal and one vertical sweep we computed exactly the Transit Nodes as defined before

Computing the Distance Tables

- For each node inside C : store the distance to all of Cs Transit Nodes

Computing the Distance Tables

- For each node inside C : store the distance to all of Cs Transit Nodes
- For each Transit Node: compute and the distance to all other Transit Nodes
- This is possible because only a few vertices are Transit Nodes
- Most cells only have about 10 Transit Nodes
- Transit Nodes are often shared between adjacent cells
- Ballpark figure: US road network using a 128×128 grid: 8000 Transit Nodes

Shortest-distance queries

- Transit Nodes also work in reverse: Every 'far' trip entering a cell will do it through one of the Transit Nodes
- All 'far' trips can be split up into three parts: src - transit $_{\text {src }}$ - transit dest - dest
- Try all possible combinations of transit nodes to find the minimum of $d\left(\right.$ src, transit $\left._{\text {src }}\right)+$ $d\left(\right.$ transit $_{\text {src }}$, transitdest $)+$ $d\left(\right.$ transit $_{\text {dest }}$, dest $)$

Shortest-distance queries

- Transit Nodes also work in reverse: Every 'far' trip entering a cell will do it through one of the Transit Nodes
- All 'far' trips can be split up into three parts: src - transit $_{\text {src }}$ - transit dest - dest
- Try all possible combinations of transit nodes to find the minimum of $d\left(\right.$ src, transit $\left._{\text {src }}\right)+$ $d\left(\right.$ transit $_{\text {src }}$, transitdest $)+$ $d\left(\right.$ transit $_{\text {dest }}$, dest $)$

Shortest-distance queries

- Transit Nodes also work in reverse: Every 'far' trip entering a cell will do it through one of the Transit Nodes
- All 'far' trips can be split up into three parts: src - transit $_{\text {src }}$ - transit dest - dest
- Try all possible combinations of transit nodes to find the minimum of $d\left(\right.$ src, transit $\left._{\text {src }}\right)+$ $d\left(\right.$ transit $_{\text {src }}$, transitdest $)+$ $d\left(\right.$ transit $_{\text {dest }}$, dest $)$

Shortest-distance queries

- Transit Nodes also work in reverse: Every 'far' trip entering a cell will do it through one of the Transit Nodes
- All 'far' trips can be split up into three parts:
src - transit $_{\text {src }}$ - transit dest - dest
- Try all possible combinations of transit nodes to find the minimum of $d\left(\right.$ src, transit $\left._{\text {src }}\right)+$ $d\left(\right.$ transit $_{\text {src }}$, transitdest $)+$ $d\left(\right.$ transit $_{\text {dest }}$, dest $)$

Shortest-distance queries

- Transit Nodes also work in reverse: Every 'far' trip entering a cell will do it through one of the Transit Nodes
- All 'far' trips can be split up into three parts: src - transit $_{\text {src }}$ - transit dest - dest
- Try all possible combinations of transit nodes to find the minimum of $d\left(\right.$ src, transit $\left._{\text {src }}\right)+$ $d\left(\right.$ transit $_{\text {src }}$, transitdest $)+$ $d\left(\right.$ transit $_{\text {dest }}$, dest $)$

Shortest-distance queries

- Transit Nodes also work in reverse: Every 'far' trip entering a cell will do it through one of the Transit Nodes
- All 'far' trips can be split up into three parts: src - transit $_{\text {src }}$ - transit dest - dest
- Try all possible combinations of transit nodes to find the minimum of $d\left(\right.$ src, transit $\left._{\text {src }}\right)+$ $d\left(\right.$ transit $_{\text {src }}$, transitdest $)+$ $d\left(\right.$ transit $_{\text {dest }}$, dest $)$

Shortest-path queries (with edges)

- Gradually find all nodes along the path
- Split it up into an already known part and the unknown rest
- Suppose we already know the path from src to a node u (initially src $=u$)
- To find the next step, find the neighbor v of u so that $d(u$, dest $)=d(u, v)+d(v$, dest $)$

Shortest-path queries (with edges)

- Problem: When approaching dest the path is no longer long enough

Shortest-path queries (with edges)

- Problem: When approaching dest the path is no longer long enough
- Two Solutions:
- Reverse the search: start from dest instead of src
- Only possible if the overall path is not too short
- Just use another algorithm to find the shortest path

Shortest-path queries (with edges)

- Problem: When approaching dest the path is no longer long enough
- Two Solutions:
- Reverse the search: start from dest instead of src
- Only possible if the overall path is not too short
- Just use another algorithm to find the shortest path
- It's possible to just fetch the next few steps instead of the whole path
- E.g. to just display the current region in navigation systems

Local queries

- If src and dest are less than 4 cells apart the shortest distance wasn't precomputed
- In such cases often the small roads are faster
- Use another shortest-path algorithm instead: Dijkstra, Highway Hierachies, etc.
- Most other algorithms are faster if the distance is very short

Multi-Level Grid

- Open Question: What grid size to choose?

Size	$\|T\|$	$\|T\| \times\|T\| /$ node	$\%$ global queries	preprocessing
64×64	2042	0.1	91.7%	498 min
128×128	7426	1.1	97.4%	525 min
256×256	24899	12.8	99.2%	638 min
512×512	89382	164.6	99.8%	859 min
1024×1024	351484	2545.5	99.9%	964 min

- Still the same goal: Not too many Transit Nodes, almost no local queries

Multi-Level Grid

- Solution: Precompute multiple grids of different sizes
- Query: Use the coarsest grid for which the query is still non-local
- Few Transit nodes, faster query time

Multi-Level Grid

- Solution: Precompute multiple grids of different sizes
- Query: Use the coarsest grid for which the query is still non-local
- Few Transit nodes, faster query time
- Precomputation: Start with a coarse grid, do normal precomputation
- Add finer grids: Compute Transit Nodes like before, but only compute distances beween Transit Nodes if they are in the local region of the parent grid

Conclusion

- Most work done in a preprocessing step
- Shortest-path queries reduced to a few table lookups
- Query time reduced from milliseconds to microseconds
- Exact responses, not an approximation
- Other stuff: Compress preprocessed data, ...

Conclusion

- Most work done in a preprocessing step
- Shortest-path queries reduced to a few table lookups
- Query time reduced from milliseconds to microseconds
- Exact responses, not an approximation
- Other stuff: Compress preprocessed data, ...
- Interesting Problems:
- Directed graphs
- Best algorithm for local queries
- Graph changes require full recomputation

Thank you!

