
TRANSIT
Ultrafast Shortest-Path Queries with Linear-Time

Preprocessing

Ferienakademie im Sarntal — Course 2
Distance Problems: Theory and Praxis

Andreas Heider

Fakultät für Informatik
TU München

26. September 2010

Andreas Heider: TRANSIT 1/ 29

Outline

1 Introduction

2 Transit Node Routing
The key observation
Formalization
Computing the Set of Transit Nodes
Computing the Distance Tables
Shortest-distance queries
Shortest-path queries (with edges)
Local queries
Multi-Level Grid

3 Conclusions

Andreas Heider: TRANSIT 2/ 29

Introduction

Overview

Goal

• Faster Shortest-Path Queries

• Application: Navigation Systems

Example

• US Road Network: 24 million nodes, 58 million edges

• Traditional Dijkstra too slow: worst case O(m + nlogn)

• Query time:
• Dijkstra: seconds
• Best other algorithms: milliseconds

• Do we really need even faster algorithms?

• Yes: Web services, Traffic simulation, etc.

Andreas Heider: TRANSIT 3/ 29

Introduction

Overview

Goal

• Faster Shortest-Path Queries

• Application: Navigation Systems

Example

• US Road Network: 24 million nodes, 58 million edges

• Traditional Dijkstra too slow: worst case O(m + nlogn)

• Query time:
• Dijkstra: seconds
• Best other algorithms: milliseconds

• Do we really need even faster algorithms?

• Yes: Web services, Traffic simulation, etc.

Andreas Heider: TRANSIT 3/ 29

Introduction

Overview

Goal

• Faster Shortest-Path Queries

• Application: Navigation Systems

Example

• US Road Network: 24 million nodes, 58 million edges

• Traditional Dijkstra too slow: worst case O(m + nlogn)

• Query time:
• Dijkstra: seconds
• Best other algorithms: milliseconds

• Do we really need even faster algorithms?

• Yes: Web services, Traffic simulation, etc.

Andreas Heider: TRANSIT 3/ 29

Introduction

Overview

Solution

• Split the work into a preprocessing step and fast queries

• Considerations: Query time, preprocessing time, space usage, etc.

Special properties of road networks

• Optimize for the special structure of the problem

• Nodes have a small degree (US road network: 2.4)

• There is a hierachy of more and more important roads

• The graph is relatively static

• Much more...

Andreas Heider: TRANSIT 4/ 29

Introduction

Overview

Solution

• Split the work into a preprocessing step and fast queries

• Considerations: Query time, preprocessing time, space usage, etc.

Special properties of road networks

• Optimize for the special structure of the problem

• Nodes have a small degree (US road network: 2.4)

• There is a hierachy of more and more important roads

• The graph is relatively static

• Much more...

Andreas Heider: TRANSIT 4/ 29

Transit Node Routing The key observation

The key observation

• When travelling far there are only a few points you will leave your
neighborhood through

• Those will be called Transit Nodes

Andreas Heider: TRANSIT 5/ 29

Transit Node Routing The key observation

Vierkirchen - Amsterdam

Andreas Heider: TRANSIT 6/ 29

Transit Node Routing The key observation

Vierkirchen - Berlin

Andreas Heider: TRANSIT 7/ 29

Transit Node Routing The key observation

Vierkirchen - Prague

Andreas Heider: TRANSIT 8/ 29

Transit Node Routing The key observation

Vierkirchen - Amsterdam/Berlin

Andreas Heider: TRANSIT 9/ 29

Transit Node Routing The key observation

Vierkirchen - Prague

Andreas Heider: TRANSIT 10/ 29

Transit Node Routing The key observation

Altomünster - Prague

Andreas Heider: TRANSIT 11/ 29

Transit Node Routing The key observation

Haimhausen - Prague

Andreas Heider: TRANSIT 12/ 29

Transit Node Routing The key observation

The key observation

• When travelling far there are only a few points you will leave your
neighborhood through

• Those will be called Transit Nodes

Algorithm outline

• Precomputation step:
• For each neighborhood: find a set of Transit Nodes
• Calculate distance from each node to its neighborhoods Transit Nodes
• Run APSP (distances) between all Transit Nodes

• Shortest distance query: Find t1, t2 so that
dist(src, t1) + dist(t1, t2) + dist(t2, trg) is minimal

Andreas Heider: TRANSIT 13/ 29

Transit Node Routing Formalization

Formalization

How to implement ‘far’

• Some metric is needed to
determine wether a trip is far
enough

• One possibility: Subdivide the
map into a grid of cells

• A trip is long enough if the start
and destination points are more
than 4 cells apart

• To determine: best grid size

Andreas Heider: TRANSIT 14/ 29

Transit Node Routing Formalization

Formalization

How to implement ‘far’

• Some metric is needed to
determine wether a trip is far
enough

• One possibility: Subdivide the
map into a grid of cells

• A trip is long enough if the start
and destination points are more
than 4 cells apart

• To determine: best grid size

Andreas Heider: TRANSIT 14/ 29

Transit Node Routing Formalization

Formalization

How to implement ‘far’

• Some metric is needed to
determine wether a trip is far
enough

• One possibility: Subdivide the
map into a grid of cells

• A trip is long enough if the start
and destination points are more
than 4 cells apart

• To determine: best grid size

Andreas Heider: TRANSIT 14/ 29

Transit Node Routing Computing the Set of Transit Nodes

Formalization

Definitions

• C: The cell for which we want to
compute the Transit Nodes

• Souter : Square with C at it’s
center, everything outside is ‘far
away’

• Sinner : Between C and Souter , all
Transit Nodes cross Sinner

Andreas Heider: TRANSIT 15/ 29

Transit Node Routing Computing the Set of Transit Nodes

Formalization

Definitions

• C: The cell for which we want to
compute the Transit Nodes

• Souter : Square with C at it’s
center, everything outside is ‘far
away’

• Sinner : Between C and Souter , all
Transit Nodes cross Sinner

Andreas Heider: TRANSIT 15/ 29

Transit Node Routing Computing the Set of Transit Nodes

Formalization

Definitions

• C: The cell for which we want to
compute the Transit Nodes

• Souter : Square with C at it’s
center, everything outside is ‘far
away’

• Sinner : Between C and Souter , all
Transit Nodes cross Sinner

Andreas Heider: TRANSIT 15/ 29

Transit Node Routing Computing the Set of Transit Nodes

Formalization

Definitions

• EC/inner/outer : Edges that cross
a square

• VC/inner/outer : For each edge in
E : pick the node with the lower
id

• All far trips starting inside C
always first pass a node in VC ,
then Vinner , then Vouter

Andreas Heider: TRANSIT 16/ 29

Transit Node Routing Computing the Set of Transit Nodes

Formalization

Definitions

• EC/inner/outer : Edges that cross
a square

• VC/inner/outer : For each edge in
E : pick the node with the lower
id

• All far trips starting inside C
always first pass a node in VC ,
then Vinner , then Vouter

Andreas Heider: TRANSIT 16/ 29

Transit Node Routing Computing the Set of Transit Nodes

Formalization

Definitions

• EC/inner/outer : Edges that cross
a square

• VC/inner/outer : For each edge in
E : pick the node with the lower
id

• All far trips starting inside C
always first pass a node in VC ,
then Vinner , then Vouter

Andreas Heider: TRANSIT 16/ 29

Transit Node Routing Computing the Set of Transit Nodes

Naive approach

Computing the Transit Nodes

• For each cell: Compute all
shortest paths between VC and
Vouter

• Mark all nodes in Vinner that lie
on such a path, these are the
Transit Nodes

• All paths starting inside VC and
ending outside Vouter will pass
one of the Transit Nodes

• This requires a shortest paths
run with a radius of 5 cells

Andreas Heider: TRANSIT 17/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Sweep-line algorithm

• A line is moved across the whole
grid

• All roads that cross the line get
processed

• When the line reaches the other
end, the solution is available

Andreas Heider: TRANSIT 18/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Computing the Transit Nodes

• For all roads intersecting the
sweep line:

• Choose one endpoint v
• Cleft ,Cright : Cells two grid

units left/right
• Find all boundary nodes vL, vR

on Cleft ,Cright

• Run Dijkstra starting at v
until we know the distance
d(v , vL/R) for all boundary
nodes

• To do this we mostly need to
look at nodes no more than 3
cells away

Andreas Heider: TRANSIT 19/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Computing the Transit Nodes

• We now know all d(v , vL/R)

• Look at all combinations of
boundary nodes in (vL, vR) with
a vertical distance of <= 4

• And determine v so that
d(vL, v) + d(v , vR) is minimal

• This v is a Transit Node for the
cells containing vL and vR

• After one horizontal and one
vertical sweep we computed
exactly the Transit Nodes as
defined before

Andreas Heider: TRANSIT 20/ 29

Transit Node Routing Computing the Set of Transit Nodes

Sweep-line algorithm

Computing the Transit Nodes

• We now know all d(v , vL/R)

• Look at all combinations of
boundary nodes in (vL, vR) with
a vertical distance of <= 4

• And determine v so that
d(vL, v) + d(v , vR) is minimal

• This v is a Transit Node for the
cells containing vL and vR

• After one horizontal and one
vertical sweep we computed
exactly the Transit Nodes as
defined before

Andreas Heider: TRANSIT 20/ 29

Transit Node Routing Computing the Distance Tables

Computing the Distance Tables

• For each node inside C : store the distance to all of C s Transit Nodes

• For each Transit Node: compute and the distance to all other Transit
Nodes

• This is possible because only a few vertices are Transit Nodes

• Most cells only have about 10 Transit Nodes

• Transit Nodes are often shared between adjacent cells

• Ballpark figure: US road network using a 128x128 grid: 8000 Transit
Nodes

Andreas Heider: TRANSIT 21/ 29

Transit Node Routing Computing the Distance Tables

Computing the Distance Tables

• For each node inside C : store the distance to all of C s Transit Nodes

• For each Transit Node: compute and the distance to all other Transit
Nodes

• This is possible because only a few vertices are Transit Nodes

• Most cells only have about 10 Transit Nodes

• Transit Nodes are often shared between adjacent cells

• Ballpark figure: US road network using a 128x128 grid: 8000 Transit
Nodes

Andreas Heider: TRANSIT 21/ 29

Transit Node Routing Shortest-distance queries

Shortest-distance queries

• Transit Nodes also work in
reverse: Every ‘far’ trip entering
a cell will do it through one of
the Transit Nodes

• All ‘far’ trips can be split up
into three parts:
src−transitsrc−transitdest−dest

• Try all possible combinations of
transit nodes to find the
minimum of d(src , transitsrc) +
d(transitsrc , transitdest) +
d(transitdest , dest)

src

tn1

tn0

tn2

trg

tnbtna

Andreas Heider: TRANSIT 22/ 29

Transit Node Routing Shortest-distance queries

Shortest-distance queries

• Transit Nodes also work in
reverse: Every ‘far’ trip entering
a cell will do it through one of
the Transit Nodes

• All ‘far’ trips can be split up
into three parts:
src−transitsrc−transitdest−dest

• Try all possible combinations of
transit nodes to find the
minimum of d(src , transitsrc) +
d(transitsrc , transitdest) +
d(transitdest , dest)

src

tn1

tn0

tn2

trg

tnbtna

Andreas Heider: TRANSIT 22/ 29

Transit Node Routing Shortest-distance queries

Shortest-distance queries

• Transit Nodes also work in
reverse: Every ‘far’ trip entering
a cell will do it through one of
the Transit Nodes

• All ‘far’ trips can be split up
into three parts:
src−transitsrc−transitdest−dest

• Try all possible combinations of
transit nodes to find the
minimum of d(src , transitsrc) +
d(transitsrc , transitdest) +
d(transitdest , dest)

src

tn1

tn0

tn2

trg

tnbtna

Andreas Heider: TRANSIT 22/ 29

Transit Node Routing Shortest-distance queries

Shortest-distance queries

• Transit Nodes also work in
reverse: Every ‘far’ trip entering
a cell will do it through one of
the Transit Nodes

• All ‘far’ trips can be split up
into three parts:
src−transitsrc−transitdest−dest

• Try all possible combinations of
transit nodes to find the
minimum of d(src , transitsrc) +
d(transitsrc , transitdest) +
d(transitdest , dest)

src

tn1

tn0

tn2

trg

tnbtna

Andreas Heider: TRANSIT 22/ 29

Transit Node Routing Shortest-distance queries

Shortest-distance queries

• Transit Nodes also work in
reverse: Every ‘far’ trip entering
a cell will do it through one of
the Transit Nodes

• All ‘far’ trips can be split up
into three parts:
src−transitsrc−transitdest−dest

• Try all possible combinations of
transit nodes to find the
minimum of d(src , transitsrc) +
d(transitsrc , transitdest) +
d(transitdest , dest)

src

tn1

tn0

tn2

trg

tnbtna

Andreas Heider: TRANSIT 22/ 29

Transit Node Routing Shortest-distance queries

Shortest-distance queries

• Transit Nodes also work in
reverse: Every ‘far’ trip entering
a cell will do it through one of
the Transit Nodes

• All ‘far’ trips can be split up
into three parts:
src−transitsrc−transitdest−dest

• Try all possible combinations of
transit nodes to find the
minimum of d(src , transitsrc) +
d(transitsrc , transitdest) +
d(transitdest , dest)

src

tn1

tn0

tn2

trg

tnbtna

Andreas Heider: TRANSIT 22/ 29

Transit Node Routing Shortest-path queries (with edges)

Shortest-path queries (with edges)

• Gradually find all nodes along the path

• Split it up into an already known part and the unknown rest

• Suppose we already know the path from src to a node u (initially
src = u)

• To find the next step, find the neighbor v of u so that
d(u, dest) = d(u, v) + d(v , dest)

Andreas Heider: TRANSIT 23/ 29

Transit Node Routing Shortest-path queries (with edges)

Shortest-path queries (with edges)

• Problem: When approaching dest the path is no longer long enough

• Two Solutions:

• Reverse the search: start from dest instead of src
• Only possible if the overall path is not too short
• Just use another algorithm to find the shortest path

• It’s possible to just fetch the next few steps instead of the whole path

• E.g. to just display the current region in navigation systems

Andreas Heider: TRANSIT 24/ 29

Transit Node Routing Shortest-path queries (with edges)

Shortest-path queries (with edges)

• Problem: When approaching dest the path is no longer long enough

• Two Solutions:
• Reverse the search: start from dest instead of src
• Only possible if the overall path is not too short
• Just use another algorithm to find the shortest path

• It’s possible to just fetch the next few steps instead of the whole path

• E.g. to just display the current region in navigation systems

Andreas Heider: TRANSIT 24/ 29

Transit Node Routing Shortest-path queries (with edges)

Shortest-path queries (with edges)

• Problem: When approaching dest the path is no longer long enough

• Two Solutions:
• Reverse the search: start from dest instead of src
• Only possible if the overall path is not too short
• Just use another algorithm to find the shortest path

• It’s possible to just fetch the next few steps instead of the whole path

• E.g. to just display the current region in navigation systems

Andreas Heider: TRANSIT 24/ 29

Transit Node Routing Local queries

Local queries

• If src and dest are less than 4 cells apart the shortest distance wasn’t
precomputed

• In such cases often the small roads are faster

• Use another shortest-path algorithm instead: Dijkstra, Highway
Hierachies, etc.

• Most other algorithms are faster if the distance is very short

Andreas Heider: TRANSIT 25/ 29

Transit Node Routing Multi-Level Grid

Multi-Level Grid

• Open Question: What grid size to choose?

Size |T | |T | × |T |/node % global queries preprocessing

64× 64 2042 0.1 91.7% 498 min
128× 128 7426 1.1 97.4% 525 min
256× 256 24899 12.8 99.2% 638 min
512× 512 89382 164.6 99.8% 859 min
1024× 1024 351484 2545.5 99.9% 964 min

• Still the same goal: Not too many Transit Nodes, almost no local
queries

Andreas Heider: TRANSIT 26/ 29

Transit Node Routing Multi-Level Grid

Multi-Level Grid

• Solution: Precompute multiple grids of different sizes

• Query: Use the coarsest grid for which the query is still non-local

• Few Transit nodes, faster query time

• Precomputation: Start with a coarse grid, do normal precomputation

• Add finer grids: Compute Transit Nodes like before, but only compute
distances beween Transit Nodes if they are in the local region of the
parent grid

Andreas Heider: TRANSIT 27/ 29

Transit Node Routing Multi-Level Grid

Multi-Level Grid

• Solution: Precompute multiple grids of different sizes

• Query: Use the coarsest grid for which the query is still non-local

• Few Transit nodes, faster query time

• Precomputation: Start with a coarse grid, do normal precomputation

• Add finer grids: Compute Transit Nodes like before, but only compute
distances beween Transit Nodes if they are in the local region of the
parent grid

Andreas Heider: TRANSIT 27/ 29

Conclusions

Conclusion

• Most work done in a preprocessing step

• Shortest-path queries reduced to a few table lookups

• Query time reduced from milliseconds to microseconds

• Exact responses, not an approximation

• Other stuff: Compress preprocessed data, ...

• Interesting Problems:

• Directed graphs

• Best algorithm for local queries

• Graph changes require full recomputation

Andreas Heider: TRANSIT 28/ 29

Conclusions

Conclusion

• Most work done in a preprocessing step

• Shortest-path queries reduced to a few table lookups

• Query time reduced from milliseconds to microseconds

• Exact responses, not an approximation

• Other stuff: Compress preprocessed data, ...

• Interesting Problems:

• Directed graphs

• Best algorithm for local queries

• Graph changes require full recomputation

Andreas Heider: TRANSIT 28/ 29

Conclusions

Thank you!

Andreas Heider: TRANSIT 29/ 29

	Introduction
	Transit Node Routing
	The key observation
	Formalization
	Computing the Set of Transit Nodes
	Computing the Distance Tables
	Shortest-distance queries
	Shortest-path queries (with edges)
	Local queries
	Multi-Level Grid

	Conclusions

