Arc Flags

Ferienakademie im Sarntal - Course 2
 Distance Problems: Theory and Practice

Tobias Walter

October 27, 2010

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Outline

(1) Introduction
(2) Preprocessing
(3) Partition
(4) Effect of Arc-Flags
(5) Computational Results

Outline

(1) Introduction

(2) Preprocessing

(3) Partition

(4) Effect of Arc-Flags

(5) Computational Results

Motivation

- Often the shortest path problem has to be solved repeatedly for the same graph
- Decrease size of the search space by using additional information
- Many arcs aren't used for shortest paths of a certain length
- Prune arcs which aren't neccesary

Notation

- Directed simple graph $G=(V, A, I), V$ finite set of nodes, $A \subseteq V \times V$ arcs, $I: A \rightarrow \mathbb{R}$ the arc lengths
- $n=|V|, m=|A|$
- Reversed graph $G_{\text {rev }}=\left(V, A_{\text {rev }}, I_{\text {rev }}\right)$ with

$$
A_{r e v}=\{(v, u) \mid(u, v) \in A\} \text { and } I_{\text {rev }}(v, u)=I(u, v)
$$

- G is called sparse, if $m \in \mathcal{O}(n)$

Basic Idea

- Divide the graph (V, A) into p regions $r: V \rightarrow\{1, \ldots, p\}$
- For every arc a assign a flag vector $f_{a}:\{1, \ldots, p\} \rightarrow\{$ false, true $\}$
- $f_{a}\left(r_{v}\right)$ is true iff a is used on a shortest path to the region of $v \in V$ (This implies that arcs inside a region mark this region)
- Only consider arcs with $f_{a}\left(r_{v}\right)=$ true in Dijkstra's algorithm for finding a shortest path to v

Basic Idea

- Divide the graph (V, A) into p regions $r: V \rightarrow\{1, \ldots, p\}$
- For every arc a assign a flag vector $f_{a}:\{1, \ldots, p\} \rightarrow\{$ false, true $\}$
- $f_{a}\left(r_{v}\right)$ is true iff a is used on a shortest path to the region of $v \in V$ (This implies that arcs inside a region mark this region)
- Only consider arcs with $f_{a}\left(r_{v}\right)=$ true in Dijkstra's algorithm for finding a shortest path to v

Modified Dijkstra still correct

Lemma
Dijkstra with arc flags finds a shortest path from s to $t, s, t \in V$ if one exists

Modified Dijkstra still correct

Lemma

Dijkstra with arc flags finds a shortest path from s to $t, s, t \in V$ if one exists

Proof.

- Consider a shortest path $s=v_{0}, \ldots, v_{n}=t$.
- Case 1: $\left(v_{i}, v_{i+1}\right)$ is inside the same region
- Case 2: $\left(v_{i}, v_{i+1}\right)$ is crossing between two regions

In both cases $f_{\left(v_{i}, v_{i+1}\right)}\left(r_{v_{i+1}}\right)$ is true by definition.

- If a path is found, it is still a shortest path since the order of the processed arcs remains unchanged

Outline

(1) Introduction

(2) Preprocessing

(3) Partition

(4) Effect of Arc-Flags

(5) Computational Results

All-Pairs Shortest Path

- For every $a=(h, t) \in A$ calculate the shortest path trees
- For every $v \in V$ check if $\left|d_{h}(v)-d_{t}(v)\right|$ equals the length of a
- If so set $f_{a}\left(r_{v}\right)$ to true
- Complexity of $\mathcal{O}(2 m(m+n \log (n)))$ Takes weeks for 1 M nodes and 2.5 M arcs

Boundary Arcs

Definition

$(u, v) \in A$ is a boundary arc if $r_{u} \neq r_{v} . v$ is then called a boundary node.
Lemma
If the flag vectors f_{a} are computed with the set of shortest paths to boundary nodes only, then Dijkstra's algortihm with arc flags is still correct

Proof.

Every shortest path from s to t, where $r_{s} \neq r_{t}$ has to enter the region r_{t} with some boundary arc (u, v). The subpath from s to v is also a shortest path. Hence the flag vectors are still the same.

Boundary Arcs (cont'd)

- For a region $r \in R$ and a boundary node b of r we calculate $T_{b}=\left\{a \in A \mid f_{a}(r)=\right.$ true, a is on a shortest path via b to any node in r \}
- The corresponding arcs in $G_{r e v}$ to T_{b} form a shortest path tree
- Calculate for every bounding node b a shortest path tree in $G_{r e v}$
- $\mathcal{O}(k(m+n \log n))$ if there are k different boundary nodes
- Running time corresponds with the choice of the partition

Centralized Shortest Path Search

- Instead of starting from just one bounding node, start from all bounding nodes $B=\left\{b_{1}, \ldots, b_{j}\right\}$ of a region
- Assign to each vertex v a label $L_{v}: B \rightarrow \mathbb{R}^{+}$
- $L_{v}\left(b_{i}\right)$ is the length of the currently shortest path to v from b_{i} in $G_{r e v}$
- Use a heap to store those nodes that wait to propagate labels
- Key $k(v)$ used for sorting the heap
- How to choose an initialization of labels and keys?

Centralized Shortest Path Search

How to initialize labels?

- Set unknown values to infinity

Centralized Shortest Path Search

How to initialize labels?

- Set unknown values to infinity
- Limited initialization
- Limit Dijkstra search to the current region
- Gives upper bound of all boundary nodes if the region is connected

Centralized Shortest Path Search

How to initialize labels?

- Set unknown values to infinity
- Limited initialization
- Limit Dijkstra search to the current region
- Gives upper bound of all boundary nodes if the region is connected
- Aborted initialization
- Dijkstra search aborted when all boundary nodes have been scanned
- Correct labels between the boundary nodes

Centralized Shortest Path Search

How to choose a good key?

- Minimum tentative key
- Let K be the set of change values
- Set $k(v):=\min (K \cup k(v))$ if v is already in the heap, else set $k(v):=\min (K)$
- Good theoretical upper bound: Each node at most $|B|$ times in heap

Centralized Shortest Path Search

How to choose a good key?

- Minimum tentative key
- Let K be the set of change values
- Set $k(v):=\min (K \cup k(v))$ if v is already in the heap, else set $k(v):=\min (K)$
- Good theoretical upper bound: Each node at most $|B|$ times in heap
- Minimum total key
- Set $k(v)$ as the minimum of all label values
- Behaves like $|B|$ parallel Dijkstra calls
- Worse theoretical upper bound, but good at experiments

Centralized Shortest Path Search

How to choose a good key?

- Minimum tentative key
- Let K be the set of change values
- Set $k(v):=\min (K \cup k(v))$ if v is already in the heap, else set $k(v):=\min (K)$
- Good theoretical upper bound: Each node at most $|B|$ times in heap
- Minimum total key
- Set $k(v)$ as the minimum of all label values
- Behaves like $|B|$ parallel Dijkstra calls
- Worse theoretical upper bound, but good at experiments
- Domination value
- Store domination value: number of values which have been improved
- Order first by domination value, then by minimum total key

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{1,6\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{6,2\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{1,2\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{2\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{3,5\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{5,4\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{6,4\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\{4\}$

Example: Centralized Shortest Path with Minimum Total Key

Nodes in the heap: $\}$

Outline

(1) Introduction

(2) Preprocessing

(3) Partition

(4) Effect of Arc-Flags

(5) Computational Results

Criteria for choosing a partition

- Number of separator arcs
- Balanced size of partitions
- Number of almost-full flag vectors

Rectangle

- Divide a bounding-box in a $x \times y$-grid
- Easy method
- Ignores structure of the graph
- Layout necessary

Quad-Trees

- Root node corresponds to the bounding-box
- Recursively divide each region in four quadrants
- Each quadrant is a child of the region
- Stop if there are less points in a region compared to a given upper bound

Quad-Trees

- Simple partition
- Almost balanced regionsize
- Layout necessary
- Separator set can be large

Quad-Trees

- Simple partition
- Almost balanced regionsize
- Layout necessary
- Separator set can be large

Quad-Trees

- Simple partition
- Almost balanced regionsize
- Layout necessary
- Separator set can be large

Quad-Trees

- Simple partition
- Almost balanced regionsize
- Layout necessary
- Separator set can be large

Quad-Trees

- Simple partition
- Almost balanced regionsize
- Layout necessary
- Separator set can be large

kd-Trees
- Recursively separate in two halves
- Alternate separating parallel to x - or y-axis
- Median for the separating line
- Layout necessary
- Balanced regionsize
- Separator set can be large

kd-Trees
- Recursively separate in two halves
- Alternate separating parallel to x - or y-axis
- Median for the separating line
- Layout necessary
- Balanced regionsize
- Separator set can be large

kd-Trees
- Recursively separate in two halves
- Alternate separating parallel to x - or y-axis
- Median for the separating line
- Layout necessary
- Balanced regionsize
- Separator set can be large

kd-Trees
- Recursively separate in two halves
- Alternate separating parallel to x - or y-axis
- Median for the separating line
- Layout necessary
- Balanced regionsize
- Separator set can be large

kd-Trees
- Recursively separate in two halves
- Alternate separating parallel to x - or y-axis
- Median for the separating line
- Layout necessary
- Balanced regionsize
- Separator set can be large

Multi-way arc separator

- Doesn't use 2d-layout
- Divides graph recursively in parts with minimal cut
- Balanced regionsize
- Almost minimal separator set

Space Consumption

- Trade-Off between one node per region and one region with all nodes
- Arc-Flags are an interpolation
- Finer partion increases speedup, but also space consumption and preprocessing time
- 225 regions proved to be sufficient for the german network

Multilevel partition

- Use a coarse partition
- Every region in the coarse partition is divided in smaller regions
- Flag vector has a local meaning
- Can be seen as a lossy
 compression of the flag vector

Data structure

- One flag per arc
- Number of combinations is bounded by $2^{|R|}$

Data structure

- One flag per arc
- Number of combinations is bounded by $2^{|R|}$
- Idea: Store flags in array and
 use pointers

Compression

- We can flip bits from 0 to 1 , but not from 1 to 0

Compression

- We can flip bits from 0 to 1 , but not from 1 to 0
- Idea: reduce number of arc flags by flipping the right bits

- Therefore we have a compression of the arc flags

Outline

(1) Introduction

(2) Preprocessing
(3) Partition
(4) Effect of Arc-Flags

(5) Computational Results

Search space

Coning-Effect

Search space using multilevel partition

Search space using bidirectional arc flags

Outline

(1) Introduction

(2) Preprocessing

(3) Partition

(4) Effect of Arc-Flags
(5) Computational Results

Search space using different partitions

Fill rate of flag vectors(474k nodes, 1.17 m arcs)

Speed-Up compared to Dijkstra

Thank you!

Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast Point-to-Point Shortest Path Computations with Arc-Flags. In Shortest Paths: Ninth DIMACS Implementation Challenge, 2009.

Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, Thomas Willhalm
Partitioning Graphs to Speed Up Dijkstra's Algorithm
Online Resource: http://www.math.tu-
berlin.de/coga/people/schillin/pub/wea2005.2.pdf
Daniel Delling
Lecture: Algorithmen für Routenplanung
Online Resource: http://i11www.iti.uni-
karlsruhe.de/_media/teaching/sommer2009/routenplanung/rp_vorlesung4

