
Arc Flags

Ferienakademie im Sarntal — Course 2
Distance Problems: Theory and Practice

Tobias Walter

October 27, 2010

Tobias Walter: Arc Flags 1/ 37

Outline

1 Introduction

2 Preprocessing

3 Partition

4 Effect of Arc-Flags

5 Computational Results

Tobias Walter: Arc Flags 2/ 37

Introduction

Outline

1 Introduction

2 Preprocessing

3 Partition

4 Effect of Arc-Flags

5 Computational Results

Tobias Walter: Arc Flags 3/ 37

Introduction

Motivation

• Often the shortest path problem has to be solved repeatedly for the
same graph

• Decrease size of the search space by using additional information

• Many arcs aren’t used for shortest paths of a certain length

• Prune arcs which aren’t neccesary

Tobias Walter: Arc Flags 4/ 37

Introduction

Notation

• Directed simple graph G = (V ,A, l),V finite set of nodes,
A ⊆ V × V arcs, l : A→ R the arc lengths

• n = |V |,m = |A|
• Reversed graph Grev = (V ,Arev , lrev) with

Arev = {(v , u) | (u, v) ∈ A} and lrev (v , u) = l(u, v)

• G is called sparse, if m ∈ O(n)

Tobias Walter: Arc Flags 5/ 37

Introduction

Basic Idea

• Divide the graph (V ,A) into p regions r : V → {1, . . . , p}
• For every arc a assign a flag vector fa : {1, . . . , p} → {false, true}
• fa(rv) is true iff a is used on a shortest path to the region of v ∈ V

(This implies that arcs inside a region mark this region)

• Only consider arcs with fa(rv) = true in Dijkstra’s algorithm for
finding a shortest path to v

Tobias Walter: Arc Flags 6/ 37

Introduction

Basic Idea

• Divide the graph (V ,A) into p regions r : V → {1, . . . , p}
• For every arc a assign a flag vector fa : {1, . . . , p} → {false, true}
• fa(rv) is true iff a is used on a shortest path to the region of v ∈ V

(This implies that arcs inside a region mark this region)

• Only consider arcs with fa(rv) = true in Dijkstra’s algorithm for
finding a shortest path to v

Tobias Walter: Arc Flags 6/ 37

Introduction

Modified Dijkstra still correct

Lemma
Dijkstra with arc flags finds a shortest path from s to t, s, t ∈ V if one
exists

Proof.

• Consider a shortest path s = v0, . . . , vn = t.

• Case 1: (vi , vi+1) is inside the same region
• Case 2: (vi , vi+1) is crossing between two regions

In both cases f(vi ,vi+1)(rvi+1) is true by definition.

• If a path is found, it is still a shortest path since the order of the
processed arcs remains unchanged

Tobias Walter: Arc Flags 7/ 37

Introduction

Modified Dijkstra still correct

Lemma
Dijkstra with arc flags finds a shortest path from s to t, s, t ∈ V if one
exists

Proof.

• Consider a shortest path s = v0, . . . , vn = t.

• Case 1: (vi , vi+1) is inside the same region
• Case 2: (vi , vi+1) is crossing between two regions

In both cases f(vi ,vi+1)(rvi+1) is true by definition.

• If a path is found, it is still a shortest path since the order of the
processed arcs remains unchanged

Tobias Walter: Arc Flags 7/ 37

Preprocessing

Outline

1 Introduction

2 Preprocessing

3 Partition

4 Effect of Arc-Flags

5 Computational Results

Tobias Walter: Arc Flags 8/ 37

Preprocessing

All-Pairs Shortest Path

• For every a = (h, t) ∈ A calculate the shortest path trees

• For every v ∈ V check if |dh(v)− dt(v)| equals the length of a

• If so set fa(rv) to true

• Complexity of O(2m(m + n log(n)))
Takes weeks for 1M nodes and 2.5M arcs

Tobias Walter: Arc Flags 9/ 37

Preprocessing

Boundary Arcs

Definition
(u, v) ∈ A is a boundary arc if ru 6= rv . v is then called a boundary node.

Lemma
If the flag vectors fa are computed with the set of shortest paths to
boundary nodes only, then Dijkstra’s algortihm with arc flags is still correct

Proof.
Every shortest path from s to t, where rs 6= rt has to enter the region rt
with some boundary arc (u, v). The subpath from s to v is also a shortest
path. Hence the flag vectors are still the same.

Tobias Walter: Arc Flags 10/ 37

Preprocessing

Boundary Arcs (cont’d)

• For a region r ∈ R and a boundary node b of r we calculate
Tb = {a ∈ A | fa(r) = true, a is on a shortest path via b to any node
in r}

• The corresponding arcs in Grev to Tb form a shortest path tree

• Calculate for every bounding node b a shortest path tree in Grev

• O(k(m + n log n)) if there are k different boundary nodes

• Running time corresponds with the choice of the partition

Tobias Walter: Arc Flags 11/ 37

Preprocessing

Centralized Shortest Path Search

• Instead of starting from just one bounding node, start from all
bounding nodes B = {b1, . . . , bj} of a region

• Assign to each vertex v a label Lv : B → R+

• Lv (bi) is the length of the currently shortest path to v from bi in Grev

• Use a heap to store those nodes that wait to propagate labels

• Key k(v) used for sorting the heap

• How to choose an initialization of labels and keys?

Tobias Walter: Arc Flags 12/ 37

Preprocessing

Centralized Shortest Path Search

How to initialize labels?

• Set unknown values to infinity

• Limited initialization
• Limit Dijkstra search to the current region
• Gives upper bound of all boundary nodes if the region is connected

• Aborted initialization
• Dijkstra search aborted when all boundary nodes have been scanned
• Correct labels between the boundary nodes

Tobias Walter: Arc Flags 13/ 37

Preprocessing

Centralized Shortest Path Search

How to initialize labels?

• Set unknown values to infinity

• Limited initialization
• Limit Dijkstra search to the current region
• Gives upper bound of all boundary nodes if the region is connected

• Aborted initialization
• Dijkstra search aborted when all boundary nodes have been scanned
• Correct labels between the boundary nodes

Tobias Walter: Arc Flags 13/ 37

Preprocessing

Centralized Shortest Path Search

How to initialize labels?

• Set unknown values to infinity

• Limited initialization
• Limit Dijkstra search to the current region
• Gives upper bound of all boundary nodes if the region is connected

• Aborted initialization
• Dijkstra search aborted when all boundary nodes have been scanned
• Correct labels between the boundary nodes

Tobias Walter: Arc Flags 13/ 37

Preprocessing

Centralized Shortest Path Search

How to choose a good key?

• Minimum tentative key
• Let K be the set of change values
• Set k(v) := min(K ∪ k(v)) if v is already in the heap, else set

k(v) := min(K)
• Good theoretical upper bound: Each node at most |B| times in heap

• Minimum total key
• Set k(v) as the minimum of all label values
• Behaves like |B| parallel Dijkstra calls
• Worse theoretical upper bound, but good at experiments

• Domination value
• Store domination value: number of values which have been improved
• Order first by domination value, then by minimum total key

Tobias Walter: Arc Flags 14/ 37

Preprocessing

Centralized Shortest Path Search

How to choose a good key?

• Minimum tentative key
• Let K be the set of change values
• Set k(v) := min(K ∪ k(v)) if v is already in the heap, else set

k(v) := min(K)
• Good theoretical upper bound: Each node at most |B| times in heap

• Minimum total key
• Set k(v) as the minimum of all label values
• Behaves like |B| parallel Dijkstra calls
• Worse theoretical upper bound, but good at experiments

• Domination value
• Store domination value: number of values which have been improved
• Order first by domination value, then by minimum total key

Tobias Walter: Arc Flags 14/ 37

Preprocessing

Centralized Shortest Path Search

How to choose a good key?

• Minimum tentative key
• Let K be the set of change values
• Set k(v) := min(K ∪ k(v)) if v is already in the heap, else set

k(v) := min(K)
• Good theoretical upper bound: Each node at most |B| times in heap

• Minimum total key
• Set k(v) as the minimum of all label values
• Behaves like |B| parallel Dijkstra calls
• Worse theoretical upper bound, but good at experiments

• Domination value
• Store domination value: number of values which have been improved
• Order first by domination value, then by minimum total key

Tobias Walter: Arc Flags 14/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1 2

2

2

2

1

1

1

1

1

2

2

1

1

Nodes in the heap: {1, 6}

Nodes in the heap: {6, 2}Nodes in the heap: {1, 2}Nodes in the heap: {2}Nodes in the heap: {3, 5}Nodes in the heap: {5, 4}Nodes in the heap: {6, 4}Nodes in the heap: {4}Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1 2

2

2

2

1

1

1

1

1

2

2

1

1

Nodes in the heap: {1, 6}

Nodes in the heap: {6, 2}

Nodes in the heap: {1, 2}Nodes in the heap: {2}Nodes in the heap: {3, 5}Nodes in the heap: {5, 4}Nodes in the heap: {6, 4}Nodes in the heap: {4}Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1 2

2
2

2

1

1

1

1

1

2

2

1

1

Nodes in the heap: {1, 6}Nodes in the heap: {6, 2}

Nodes in the heap: {1, 2}

Nodes in the heap: {2}Nodes in the heap: {3, 5}Nodes in the heap: {5, 4}Nodes in the heap: {6, 4}Nodes in the heap: {4}Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1 2

2
2

2

1

1

1

1

1

2

2

1

1

Nodes in the heap: {1, 6}Nodes in the heap: {6, 2}Nodes in the heap: {1, 2}

Nodes in the heap: {2}

Nodes in the heap: {3, 5}Nodes in the heap: {5, 4}Nodes in the heap: {6, 4}Nodes in the heap: {4}Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1

2

2

2

2

1

1

1

1

1

2

2

1

1

Nodes in the heap: {1, 6}Nodes in the heap: {6, 2}Nodes in the heap: {1, 2}Nodes in the heap: {2}

Nodes in the heap: {3, 5}

Nodes in the heap: {5, 4}Nodes in the heap: {6, 4}Nodes in the heap: {4}Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1

2

2

2

2

1

1

1

1

1

2

2

1

1

Nodes in the heap: {1, 6}Nodes in the heap: {6, 2}Nodes in the heap: {1, 2}Nodes in the heap: {2}Nodes in the heap: {3, 5}

Nodes in the heap: {5, 4}

Nodes in the heap: {6, 4}Nodes in the heap: {4}Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1

2

2

2

2

1

1

1

1 1

2

2

1

1

Nodes in the heap: {1, 6}Nodes in the heap: {6, 2}Nodes in the heap: {1, 2}Nodes in the heap: {2}Nodes in the heap: {3, 5}Nodes in the heap: {5, 4}

Nodes in the heap: {6, 4}

Nodes in the heap: {4}Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1

2

2

2

2

1

1

1

1 1

2

2

1

1

Nodes in the heap: {1, 6}Nodes in the heap: {6, 2}Nodes in the heap: {1, 2}Nodes in the heap: {2}Nodes in the heap: {3, 5}Nodes in the heap: {5, 4}Nodes in the heap: {6, 4}

Nodes in the heap: {4}

Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Preprocessing

Example: Centralized Shortest Path with Minimum Total
Key

1

(0,∞)

1

(0, 1)

2

(∞,∞)

2

(2,∞)

2

(2, 2)

3

(∞,∞)

3

(3, 3)

4

(∞,∞)

4

(5, 5)

5

(∞,∞)

5

(4, 4)

6

(∞, 0)

6

(5, 0)

2

2

1

2

2

2

2

1

1

1

1 1

2

2

1

1

Nodes in the heap: {1, 6}Nodes in the heap: {6, 2}Nodes in the heap: {1, 2}Nodes in the heap: {2}Nodes in the heap: {3, 5}Nodes in the heap: {5, 4}Nodes in the heap: {6, 4}Nodes in the heap: {4}

Nodes in the heap: {}

Tobias Walter: Arc Flags 15/ 37

Partition

Outline

1 Introduction

2 Preprocessing

3 Partition

4 Effect of Arc-Flags

5 Computational Results

Tobias Walter: Arc Flags 16/ 37

Partition

Criteria for choosing a partition

• Number of separator arcs

• Balanced size of partitions

• Number of almost-full flag vectors

Tobias Walter: Arc Flags 17/ 37

Partition

Rectangle

• Divide a bounding-box in a
x × y -grid

• Easy method

• Ignores structure of the graph

• Layout necessary

Tobias Walter: Arc Flags 18/ 37

Partition

Quad-Trees

• Root node corresponds to the
bounding-box

• Recursively divide each region in
four quadrants

• Each quadrant is a child of the
region

• Stop if there are less points in a
region compared to a given
upper bound

Tobias Walter: Arc Flags 19/ 37

Partition

Quad-Trees

• Simple partition

• Almost balanced regionsize

• Layout necessary

• Separator set can be large

Tobias Walter: Arc Flags 20/ 37

Partition

Quad-Trees

• Simple partition

• Almost balanced regionsize

• Layout necessary

• Separator set can be large

Tobias Walter: Arc Flags 20/ 37

Partition

Quad-Trees

• Simple partition

• Almost balanced regionsize

• Layout necessary

• Separator set can be large

Tobias Walter: Arc Flags 20/ 37

Partition

Quad-Trees

• Simple partition

• Almost balanced regionsize

• Layout necessary

• Separator set can be large

Tobias Walter: Arc Flags 20/ 37

Partition

Quad-Trees

• Simple partition

• Almost balanced regionsize

• Layout necessary

• Separator set can be large

Tobias Walter: Arc Flags 20/ 37

Partition

kd-Trees

• Recursively separate in two
halves

• Alternate separating parallel to
x- or y -axis

• Median for the separating line

• Layout necessary

• Balanced regionsize

• Separator set can be large

Tobias Walter: Arc Flags 21/ 37

Partition

kd-Trees

• Recursively separate in two
halves

• Alternate separating parallel to
x- or y -axis

• Median for the separating line

• Layout necessary

• Balanced regionsize

• Separator set can be large

Tobias Walter: Arc Flags 21/ 37

Partition

kd-Trees

• Recursively separate in two
halves

• Alternate separating parallel to
x- or y -axis

• Median for the separating line

• Layout necessary

• Balanced regionsize

• Separator set can be large

Tobias Walter: Arc Flags 21/ 37

Partition

kd-Trees

• Recursively separate in two
halves

• Alternate separating parallel to
x- or y -axis

• Median for the separating line

• Layout necessary

• Balanced regionsize

• Separator set can be large

Tobias Walter: Arc Flags 21/ 37

Partition

kd-Trees

• Recursively separate in two
halves

• Alternate separating parallel to
x- or y -axis

• Median for the separating line

• Layout necessary

• Balanced regionsize

• Separator set can be large

Tobias Walter: Arc Flags 21/ 37

Partition

Multi-way arc separator

• Doesn’t use 2d-layout

• Divides graph recursively in
parts with minimal cut

• Balanced regionsize

• Almost minimal separator set

Tobias Walter: Arc Flags 22/ 37

Partition

Space Consumption

• Trade-Off between one node per region and one region with all nodes

• Arc-Flags are an interpolation

• Finer partion increases speedup, but also space consumption and
preprocessing time

• 225 regions proved to be sufficient for the german network

Tobias Walter: Arc Flags 23/ 37

Partition

Multilevel partition

• Use a coarse partition

• Every region in the coarse
partition is divided in smaller
regions

• Flag vector has a local meaning

• Can be seen as a lossy
compression of the flag vector

Tobias Walter: Arc Flags 24/ 37

Partition

Data structure

• One flag per arc

• Number of combinations is
bounded by 2|R|

• Idea: Store flags in array and
use pointers

Tobias Walter: Arc Flags 25/ 37

Partition

Data structure

• One flag per arc

• Number of combinations is
bounded by 2|R|

• Idea: Store flags in array and
use pointers

Tobias Walter: Arc Flags 25/ 37

Partition

Compression

• We can flip bits from 0 to 1, but
not from 1 to 0

• Idea: reduce number of arc flags
by flipping the right bits

• Therefore we have a
compression of the arc flags

Tobias Walter: Arc Flags 26/ 37

Partition

Compression

• We can flip bits from 0 to 1, but
not from 1 to 0

• Idea: reduce number of arc flags
by flipping the right bits

• Therefore we have a
compression of the arc flags

Tobias Walter: Arc Flags 26/ 37

Effect of Arc-Flags

Outline

1 Introduction

2 Preprocessing

3 Partition

4 Effect of Arc-Flags

5 Computational Results

Tobias Walter: Arc Flags 27/ 37

Effect of Arc-Flags

Search space

Tobias Walter: Arc Flags 28/ 37

Effect of Arc-Flags

Coning-Effect

Tobias Walter: Arc Flags 29/ 37

Effect of Arc-Flags

Search space using multilevel partition

Tobias Walter: Arc Flags 30/ 37

Effect of Arc-Flags

Search space using bidirectional arc flags

Tobias Walter: Arc Flags 31/ 37

Computational Results

Outline

1 Introduction

2 Preprocessing

3 Partition

4 Effect of Arc-Flags

5 Computational Results

Tobias Walter: Arc Flags 32/ 37

Computational Results

Search space using different partitions

Tobias Walter: Arc Flags 33/ 37

Computational Results

Fill rate of flag vectors(474k nodes, 1.17m arcs)

Tobias Walter: Arc Flags 34/ 37

Computational Results

Speed-Up compared to Dijkstra

Tobias Walter: Arc Flags 35/ 37

Computational Results

Thank you!

Tobias Walter: Arc Flags 36/ 37

Computational Results

Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling.
Fast Point-to-Point Shortest Path Computations with Arc-Flags.
In Shortest Paths: Ninth DIMACS Implementation Challenge, 2009.

Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner,
Thomas Willhalm
Partitioning Graphs to Speed Up Dijkstra’s Algorithm
Online Resource: http://www.math.tu-
berlin.de/coga/people/schillin/pub/wea2005.2.pdf

Daniel Delling
Lecture: Algorithmen für Routenplanung
Online Resource: http://i11www.iti.uni-
karlsruhe.de/ media/teaching/sommer2009/routenplanung/rp vorlesung4.pdf

Tobias Walter: Arc Flags 37/ 37

	Introduction
	Preprocessing
	Partition
	Effect of Arc-Flags
	Computational Results

