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Abstract

In this report we will consider the point-to-point shortest path problem. The basic idea
will be that for a given graph, information can be preprocessed. We will discuss an approach
called arc flags which was introduced by Lauther in [Lau04] and improved by Kohler et al. in
[KMS09)
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1 Introduction

The point-to-point shortest path problem in a network with nonnegative arc weights is widely
used as a basic operation in many applications. Most often it is used in route planning for
cars or timetable information systems for trains. The main approach, which is used nowadays,
relies on Dijkstra’s algorithm as described in [Dij59]. Using fibonacci heaps as described by
Fredman and Tarjan in [E'T87] the Dijkstra algorithm has a complexity of O(m+nlog(n)). In
many applications the graphs are still too huge for Dijkstra’s algorithm. Since those graphs are
often static, we may however preprocess data in order to reduce the search space of Dijkstra’s
algorithm. In this report we present the results which were obtained in [KMS09].

2 Preliminaries

2.1 Notation

A directed simple graph G is a pair (V, A). We call the finite set V nodes and A CV x V
arcs. We set n := |V| and m := |A|. Our primary interest lies in weighted graphs. A weighted
graph is a graph (V, A) with a function [ : A — R. [ is called the arc weight. A path p is a
sequence p = (v, ...,v;) of nodes, such that (v;,v;41) € A for 1 <i < k. p is called a cycle
if v1 = vi. We define the length of a path p as I(p) := Zf;ll l(vi,viy1). The reversed graph
Grev = (V, Arey, lrev) 1s defined as A,ep := {(v,u) | (u,v) € A} and lyey (v, u) := l(u,v). In this
paper we adapt Dijkstra’s algorithm to solve the point-to-point shortest path problem. Given
a source s € V and a target t € V', we calculate the shortest the s-t-path. A shortest s-t-path
(s,...,t) is a path from s to ¢ that minimizes the path length. If the graph has no negative
cycle, i.e. no cycle p with I(p) < 0, Johnson’s algorithm shows that we can transform the arc
weights to nonnegative arc weights, such that all shortest paths are preserved. Therefore we
may assume that all arc weights are nonnegative.

2.2 Arc Flags

We want to solve the point-to-point shortest path problem for a fixed graph. Hence we have
the advantage that we can preprocess shortest paths. Storing every shortest s-t-path however
consumes O (nQ) space. In practice this is too much space for large graphs. We introduce
arc flags with the intend to approximate this approach. Therefore the graph G is divided
into p different regions. For every node v we denote the corresponding region with r,. More
formal r is a function from V' into the regions {1,...,p}. For every arc a we store a flag vector
fa : {1,...,p} — {true,false}. It is f,(i) = true if and only if a is used on a shortest path
into the region 4 or the target of a is already in the region i. The modification to Dijkstra’s
algorithm is now easy. In order to find a shortest s-t-path we will only consider those arcs
a € A with f,(r;) = true. As an example we can look at the graph in Figure 1. The nodes are
mapped to the regions according to the different colors. Assume we want to find a shortest
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Figure 1: Example of arc flags for a small graph



way from node 3 to node 1. The only choice for our algorithm is the arc (3,2). Dijkstra’s
algorithm would now have two choices, either the arc (2,5) or the arc (2,1). But the modified
Dijkstra algorithm with arc flags doesn’t follow the arc (2,5) since we have f(5 5)(r1) = 0. The
following lemma shows that our modification is still correct.

Lemma 2.1. Dijkstra’s algorithm with arc flags finds a shortest path from s to t, s,t € V if
one exists.

Proof. Consider a shortest path s = vy, ..., v, = t found by Dijkstra’s algorithm. By definition
we have f(, v, 1) (Tvi,,) 18 true. Therefore the modified Dijkstra algorithm with arc flags also
finds this way. If a path is found, it is still a shortest path since the order of the processed
arcs remains unchanged. O

3 Preprocessing

3.1 All pairs shortest path

Let d(u,v) denote the distance from w € V to v € V in G. Assume we have all the distances
given. We can compute the flag vectors of an arc a for an region R by checking if a lies on a
shortest path into R. Hence we consider the shortest paths from u to any node r € R. The
arc a = (u,v) € A lies on a shortest path if and only if d(u,r) = d(u,v) + d(v,r)'. If so, or
v € R, we set f,(R) = true. We can use the shortest path trees from u and v calculated by
Dijkstra’s algorithm for this. This means we have to do 2m Dijkstra runs in order to calculate
the flag vectors. In practice with large graphs (approximately 1 million nodes and 2.5 million
arcs) this would take weeks.

3.2 Basic preprocessing without all pairs shortest path

We don’t have to calculate every shortest path into a region R. It is sufficient to calculate
only those shortest paths which end at the border of a region R. In order to allow easier
terminology this is briefly defined.

Definition 3.1. (u,v) € A is a boundary arc if ry, # 1. v is then called a boundary node.
Using the above described insight, we obtain the following lemma.

Lemma 3.2. If the flag vectors f, are computed with the set of shortest paths to boundary
nodes only, then Dijkstra’s algorithm with arc flags is still correct.

Proof. Every shortest path from s to t, where ry # 1 has to enter the region r; with some
boundary arc (u,v). The subpath from s to v is also a shortest path. Hence the flag vectors
are still the same. O

Instead of calculating the shortest paths to a boundary node v, we will now calculate a
shortest path tree for v in Ge,. This results in those arcs used for shortest paths to the
boundary node v. Hence we can set the flag at those arcs to true. We can calculate the
shortest path tree for v in O(m+nlog(n)). Assuming we have a sparse graph and k& boundary
nodes this results in a time complexity of O(knlog(n)). The running time is hence directly
dependent on the number of boundary nodes, which is dependent on the given partition of
the graph. Therefore having a small number of boundary nodes is an aim when we choose the
parition. This will be further discussed in Section

IThis is true because we assumed nonnegative arc weights.



3.3 Centralized Shortest Path Search

Up to now we have only used single Dijkstra runs in order to get the flag vectors. Shortest path
trees are quite similiar if we start from the same neightborhood. Therefore we run Dijkstra at
the same time for every boundary node of a given region and try to use the information gained
on Dijkstra runs from the other boundary nodes. Let B = {b1,...,b;} denote the boundary
nodes of a given region. We assign to every node v a label L, : B — R. An entry L,(b;)
stands for the length of the currently shortest path from b; to v found by the algorithm. Each
node v also has a key k(v) which is used for sorting in the heap. The algorithm behaves now
like the labeling algorithm and extracts the elements with the lowest key in our heap. This
element v propagates his labels now to every neighbor w of v. Every component of our label
vector is updated the usual way. The behavior of this algorithm depends on two choices, the
initialization of the labels and the algorithm to set the keys.

Choosing the initialization of the labels

Setting unknown values to infinity This method is the same as used in Dijkstra’s algorithm.
We assign zero to the distance of the boundary nodes in B to themselves and set all other
values to infinity.

Limated initialization We limit a Dijkstra run just on the region which is currently exam-
ined. This delivers upper bounds for the distances between the nodes of the region if the
region is connected. Even though those values needn’t to be the correct values, since shortest
paths between two nodes of a region might use arcs outside of the region, we still could use
those upper bounds.

Aborted initialization For every boundary node we run Dijkstra’s algorithm until we found
a shortest path to every node in the region. Then the algorithm is aborted. This delivers
correct distances between the boundary nodes of a region.

In practice aborted initialization outperforms limited initialization. In every case all nodes
have to be stored in the heap which have some incorrect label entries.

Choosing the key values

Minimum tentative key Consider that the label of L, has been changed during the relax-
ation of an arc (u,v). Let K be the set of values which have been changed in L,. We update
k(v) = min(K U k(v)) if v already had a key k(v), else we set k(v) = min(K). The advantage
of this method is that we can prove its good behavior.

Lemma 3.3. Using the minimum tentative key strategy, every vertex is scanned at most |B|
times and the key values of the scanned nodes are non-decreasing.

Proof. cf. Lemma 3.2 in [KMS09]. O

Minimum total key Another possible way of choosing the key is taking the minimum of all
label entries as the key. Using this strategy, labels which do not represent the shortest path
value yet will be updated earlier. This is so because nodes that have been scanned already will
still have their old key value after they have been processed again. So they are ordered into
the heap before every node which has not been visited yet. Hence we don’t have to correct
many labels which were based on a wrong estimate of an entry. Even though we can’t prove
an upper bound for the number of times a node is added to the heap, the minimum total key
strategy outperforms the minimum tentative key strategy in practice.



Domination values We want to propagate those labels which are most likely correct. For
this we define a kind of quality based key value. We store to every node v the domination
value, which is the number of improvements in the label from v since the last propagation
of v. The key now consists of this domination value and the minimum total key, where the
domination value has priority.

4 Partition

We have already seen in Lemma that every partition can be used for Dijkstra’s algorithm
with arc flags. The question arises which partition leads to the best speed-ups. First of all the
number of separator arcs should be small, as we have already seen in Section We should
also balance the number of nodes in every region. Every flag vector has the same importance
if we balance this. We should also try to minimize the number of almost-full flag vectors as
they are not useful for the algorithm.

Most of our parition algorithms use a layout of our graph. We define L : V' — R? to be
a layout and identify every node with its position in the layout. We can assume that every
graph lies inside a bounding-box.

Rectangular grid We divide the bounding-box into a z x y-grid. Let (I,t) denote the top-
left position and (r,b) denote the bottom-right position. The regions G; ; are defined as the
rectangular [l+i'@,l+(i—|—1)-(rm;l)] X [b—i—j-%,b—i—(‘j—i—l) : (t;yb)] for 0 <i < z and

0 < j < y. This method ignores every other information about the graph and therefore it is
not surprising that it is slower in practice compared to other partitions.

Quad-Trees We define a tree. The leaves of the tree represent our regions. We start with
the root node vg which represents the the bounding-box ryg. We now divide every region r;
which is represented by the node v; into four quadrants, as long as r; contains more nodes
than a given bound. Every quadrant is assigned a subregion and a node, which is a child of
v;. This method guarantees almost balanced regions.

kd-Trees Similar to Quad-Trees we divide a bounding-box into two parts. Every part will be
divided recursively until every region has less than a given upper bound. We divide so, that
the position is given by the median of the points inside. The division is alternated between
the axes, it is divided by the z-axis,y-axis,xz-axis, .. ..

Multi-way arc separator Up to now all partition algorithms used a given layout. A way
to get a region can also be to cut the graph in parts with a minimal separator set. This can
be done recursively. Using such an approach can also balance the number of nodes in every
region. For details see [KK9§].

5 Conclusion

Arc flags are a fast and easy way to improve Dijkstra’s algorithm. As the results in [KMS09]
show, Dijkstra’s algorithm improves to a factor of more than 1000 times faster running time
on certain instances. Despite this improvement less overhead is stored. 225 regions proved to
be sufficient for graphs which occur in practice. The additional bits needed can be lowered by
compressing the flag vectors. Further studies on the quality of the region could still improve
the algorithm.
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