
Bidirectional search and Goal-directed Dijkstra

Ferienakademie im Sarntal — Course 2
Distance Problems: Theory and Praxis

Kozyntsev A.N.

Fakultät für Informatik
TU München

26. September 2010

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 1/ 42

Outline

1 Introduction
Repetition of Dijkstra
Definition of a Random Graph
Analysis of Unidirectional Search

2 Basic heuristics
Bidirectional search

Definitions
Phase I
Phase II
Implementation Details

Goal-directed search
Definitions
Computing lower bounds
Landmark selection

Comparison

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 2/ 42

Introduction

Introduction

Problems

• Network flow

• Approximations to the traveling salesman problem

• Problem-solving systems in artificial intelligence

Realization: providing driving directions

• Mapquest

• Yahoo! Maps

• Microsoft MapPoint

• Some GPS devices

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 3/ 42

Introduction

Introduction

Yahoo! Maps
http://maps.yahoo.com/

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 4/ 42

http://maps.yahoo.com/

Introduction Repetition of Dijkstra

Q.insert(s, 0)
while not Q.isEmpty() do

v ← Q.dequeue()
if v = t then

// shortest path found
return

end
forall outgoing edges e = (v ,w) do

if w is a new node then
Q.insert(w , dist(v) + w(e))
pre(w)← v

end
else

if dist(v) + w(e) ≤ dist(w) then
Q.decreaseKey(w , dist(w) + w(e))
pre(w)← v

end

end

end

end
// no shortest path found
stop

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 5/ 42

Introduction Definition of a Random Graph

Definition of a Random Graph

For expository purposes we use the following probabilistic model:

1 The graph is a complete directed graph with n nodes.

2 Using an exponential distribution: the mean length of an edge is 1/λ
for all n, or Pr [`e ≤ x] = 1− exp−λx

3 Exponential distribution is memoryless:
Pr [`e ≤ x + y |`e ≥ x] = Pr [`e ≤ y] for all x , y ≥ 0.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 6/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

We need to study the distribution of the number of edges discovered
before d is added to S.

• Consider a point when L = t and k edges e1, e2, . . . , ek are active.
• Suppose that ei was activated when L = xi
• Then it’s known that `i ≥ t − xi .
• Of these edges, the one next discovered is the one that minimize
`i + x

• But, for any y ≥ 0:

Pr [xi + `i ≤ y |`i ≥ t − xi] = Pr [`i ≤ (t − xi) + y − t|`i ≥ t − xi]

= Pr [`i ≤ y − t]

• This probability is the same for all edges ei because each `i is
independently chosen from a common exponential distribution.

• Thus each ei is equally likely to be the next one discovered.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 7/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

We need to study the distribution of the number of edges discovered
before d is added to S.

• Consider a point when L = t and k edges e1, e2, . . . , ek are active.
• Suppose that ei was activated when L = xi
• Then it’s known that `i ≥ t − xi .
• Of these edges, the one next discovered is the one that minimize
`i + x

• But, for any y ≥ 0:

Pr [xi + `i ≤ y |`i ≥ t − xi] = Pr [`i ≤ (t − xi) + y − t|`i ≥ t − xi]

= Pr [`i ≤ y − t]

• This probability is the same for all edges ei because each `i is
independently chosen from a common exponential distribution.

• Thus each ei is equally likely to be the next one discovered.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 7/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

We need to study the distribution of the number of edges discovered
before d is added to S.

• Consider a point when L = t and k edges e1, e2, . . . , ek are active.
• Suppose that ei was activated when L = xi
• Then it’s known that `i ≥ t − xi .
• Of these edges, the one next discovered is the one that minimize
`i + x

• But, for any y ≥ 0:

Pr [xi + `i ≤ y |`i ≥ t − xi] = Pr [`i ≤ (t − xi) + y − t|`i ≥ t − xi]

= Pr [`i ≤ y − t]

• This probability is the same for all edges ei because each `i is
independently chosen from a common exponential distribution.

• Thus each ei is equally likely to be the next one discovered.
Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 7/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

Let the random variable X be the number of nodes in S at the end
of the algorithm. Then

Pr(X = k) =
1

(n − 1)
, for 2 ≤ k ≤ n (1)

E (X) = Θ(n) (2)

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 8/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

Proof.

• We say the algorithm is in stage k when |S | = k

• In stage k there are k(n − k) external edges leaving S , of which only
k go to d

• The probability that d is added to S in stage k is 1/(n − k)

• Using induction on k : Pr(X = k) = 1/(n − 1) for k = 2, 3, . . . , n

• It follows that E (X) = 1 + (n/2)

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 9/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

The expected number of edge discoveries in unidirectional search,
both internal and external, is Θ(n).

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 10/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

Proof.

• Let Yi be the number of internal edges discovered in stage i

• In stage i there are i(n − i) external(good) edges active, and at most
i2 internal(bad) edges active

• The probability that a bad edge is next discovered is at most i/n

• E [Yi] ≤ i(n − i)

• E [Z] ≤ n

• The number of edges discovered (internal and external) is O(n)

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 11/ 42

Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

What improvements can you suggest?

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 12/ 42

Basic heuristics Bidirectional search

Basic heuristics

• For the single pair shortest path problem, 2 techniques will be
presented:

1 Bidirectional search
2 Goal-Directed search

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 13/ 42

Basic heuristics Bidirectional search

Bidirectional search

Bidirectional search

• Definition

• Analysis
• Analysis of Phase I
• Analysis of Phase II

• Applications

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 14/ 42

Basic heuristics Bidirectional search

Bidirectional search

The bidirectional search algorithm proceeds in two phases.

1 Phase I alternately adds one node to S and one node to D,
continuing until an edge crosing from S to D is drawn

2 Phase II finds a minimum path from S to D

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 15/ 42

Basic heuristics Bidirectional search

Bidirectional search

• After all Dijkstra iterations, for every node u not inside Q, L(u) is the
length of the shortest s − u − path.

• At the same time we could execute another Dijkstra on the graph
with reversed arcs. Now we have the length of the shortest
v − d − path for each node v not in this second priority queue too.

• When a node gets outside both priority queues, we know the shortest
path.

• A degree of freedom in this method is the choice whether a forward or
backward iteration is executed.

• Simply alternate or choose the one with lower minimum d in the
queue are examples of strategies.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 16/ 42

Basic heuristics Bidirectional search

Bidirectional search

• After all Dijkstra iterations, for every node u not inside Q, L(u) is the
length of the shortest s − u − path.

• At the same time we could execute another Dijkstra on the graph
with reversed arcs. Now we have the length of the shortest
v − d − path for each node v not in this second priority queue too.

• When a node gets outside both priority queues, we know the shortest
path.

• A degree of freedom in this method is the choice whether a forward or
backward iteration is executed.

• Simply alternate or choose the one with lower minimum d in the
queue are examples of strategies.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 16/ 42

Basic heuristics Bidirectional search

Bidirectional search

• After all Dijkstra iterations, for every node u not inside Q, L(u) is the
length of the shortest s − u − path.

• At the same time we could execute another Dijkstra on the graph
with reversed arcs. Now we have the length of the shortest
v − d − path for each node v not in this second priority queue too.

• When a node gets outside both priority queues, we know the shortest
path.

• A degree of freedom in this method is the choice whether a forward or
backward iteration is executed.

• Simply alternate or choose the one with lower minimum d in the
queue are examples of strategies.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 16/ 42

Basic heuristics Bidirectional search

Bidirectional search

• After all Dijkstra iterations, for every node u not inside Q, L(u) is the
length of the shortest s − u − path.

• At the same time we could execute another Dijkstra on the graph
with reversed arcs. Now we have the length of the shortest
v − d − path for each node v not in this second priority queue too.

• When a node gets outside both priority queues, we know the shortest
path.

• A degree of freedom in this method is the choice whether a forward or
backward iteration is executed.

• Simply alternate or choose the one with lower minimum d in the
queue are examples of strategies.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 16/ 42

Basic heuristics Bidirectional search

Bidirectional search

• After all Dijkstra iterations, for every node u not inside Q, L(u) is the
length of the shortest s − u − path.

• At the same time we could execute another Dijkstra on the graph
with reversed arcs. Now we have the length of the shortest
v − d − path for each node v not in this second priority queue too.

• When a node gets outside both priority queues, we know the shortest
path.

• A degree of freedom in this method is the choice whether a forward or
backward iteration is executed.

• Simply alternate or choose the one with lower minimum d in the
queue are examples of strategies.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 16/ 42

Basic heuristics Bidirectional search

Bidirectional search: Phase I

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 17/ 42

Basic heuristics Bidirectional search

Bidirectional search: Phase I

• Let X be the number of stages in Phase I

• Then E [X] = Θ(
√
n)

• The total number of edges discovered in Phase I is bounded by 2X
plus the number of internal edges that are discovered

• The expected number of internal edges discovered in Phase I is
O(1)

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 18/ 42

Basic heuristics Bidirectional search

Bidirectional search: Phase II

In general, the s − d path P found at the end of Phase I is not
necessarily the shortest s − d path.

• The shortest s − d path lies entirely within the search trees associated
with S and D except for at most one cross-edge.

• The aim of Phase II is to find the shortest path among this restricted
set of paths.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 19/ 42

Basic heuristics Bidirectional search

Bidirectional search: Phase II

Phase II is a process of node elimination.

1 Let v be the last node added to D at Phase I and tv be the value of
LD

2 We increase LS until LS + tv ≥ U, where U = LS + LD at the end of
Phase I

3 At this point, the length of any undiscovered path from s to d via v
is at least LS + tv ⇒ we can eliminate v from D

4 We then increase LD until we can eliminate the last node added to S
in Phase I

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 20/ 42

Basic heuristics Bidirectional search

Bidirectional search: Phase II

The expected number of edges discovered during Phase II is O(
√
n).

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 21/ 42

Basic heuristics Bidirectional search

Bidirectional search: Implementation Details

Unidirectional Search

1 Each queue operation takes O(log n) time

2 The expected running time is O(n log n)

Bidirectional Search

1 Each queue operation takes O(log n) time

2 The expected running time is O(
√
n log n)

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 22/ 42

Basic heuristics Bidirectional search

Bidirectional search: Implementation Details

Unidirectional Search

1 Algorithm searches a ball with s in the center and d on the boundary

Bidirectional Search

1 Algorithm searches two touching balls centered at s and d .

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 23/ 42

Basic heuristics Goal-directed search

Goal-directed search

Goal-directed search

• Definitions

• Computing lower bounds

• Landmark selection

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 24/ 42

Basic heuristics Goal-directed search

Goal-directed search

Keynotes

1 Modifies the priority of active nodes to change the order in which the
nodes are processed.

2 Adds to the priority dist(u) a potential ρt : V → <+
0 depending on

the target t of the search.

3 Changes the edge lengths such that the search is given towards the
target t

4 The weight of an edge (u, v) ∈ E is replaced by
`′(u, v) := `(u, v)− ρt(u) + ρt(v)

5 Use Dijkstra with the new weights.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 25/ 42

Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Obtaining feasible potentials

• Euclidean Distances

• Landmarks

• Distances from Graph Condensation

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 26/ 42

Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Euclidean Distances

• Assume a layout L : V → <2 of the graph is available where the
length of an edge is correlated with the Euclidean distance of its end
nodes.

• A feasible potential for a node v can be obtained using the
Euclidean distance ‖L(v)− L(t)‖ to the target t

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 27/ 42

Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Landmarks

• A small fixed-sized subset L ⊂ V of landmarks is chosen

• The distance d(v , `) to all nodes ` ∈ L is precomputed and stored, for
all v ∈ V .

• The potential for each landmark

ρ
(`)
t (v) = max{dist(v , `)−dist(t, `), dist(`, t)−dist(`, v)} ≤ dist(v , t).

• The potential ρt(v) := max{ρ(`)
t (v); l ∈ L}.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 28/ 42

Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Why our ALT algorithms work well?

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 29/ 42

Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Why our ALT algorithms work well?

• The shortest s − L route consists of:

1 a segment from s to a highway
2 a segment that uses highways only
3 a segment from a highway to L

• The shortest route to t follows the same path

• The lower bound ρ`t has the following property `′(v ,w) = 0

• These arcs will be the first ones the ALT algorithm will scan

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 30/ 42

Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Distances from Graph Condensation

• Just run Dijkstra Algorithm on a condensed graph.

• The distances of all v to the target t can be obtained by a single run
of Dijkstra’s Algorithm.

• This distances provide a feasible potential for the time-expanded
graph.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 31/ 42

Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Finding good landmarks is critical for the overall performance of
lower-bounding algorithms.

1 Random Landmark Selection

2 Farthest Landmark Selection

3 Planar Landmark Selection

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 32/ 42

Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Random Landmark Selection

The simplest way of selecting landmarks is to select k landmark verticies
at random

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 33/ 42

Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Farthest Landmark Selection

• Pick a start vertex and find a vertex v1 that is farthest far away from
it.

• Add v1 to the set landmarks.

• Proceed in iterations, finding a vertex that is farthest away from the
current set of landmarks.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 34/ 42

Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Planar Landmark Selection

• Find a vertex c closest to the center of the embedding.

• Divide the embedding into k pie-slice sectors centered at c .

• For each sector pick a vertex farthest away from the center.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 35/ 42

Basic heuristics Comparison

Comparison

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 36/ 42

Basic heuristics Comparison

Bidirectional lower-bounding algorithms

• Just run the forward and the reverse searches and stop as soon as
they meet. This does not work, however.

• We say that ρt and ρs are consistent if for all arcs (v ,w), `ρt (v ,w) in
the original graph is equal to `ρs (w , v) in the reverse graph.
→ρt + ρs = const

• If they are not, the forward and the reverse searches use different
length functions. Therefore when the searches meet, we have no
guarantee that the shortest path has been found.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 37/ 42

Basic heuristics Comparison

Bidirectional lower-bounding algorithms

• Just run the forward and the reverse searches and stop as soon as
they meet. This does not work, however.

• We say that ρt and ρs are consistent if for all arcs (v ,w), `ρt (v ,w) in
the original graph is equal to `ρs (w , v) in the reverse graph.
→ρt + ρs = const

• If they are not, the forward and the reverse searches use different
length functions. Therefore when the searches meet, we have no
guarantee that the shortest path has been found.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 37/ 42

Basic heuristics Comparison

Bidirectional lower-bounding algorithms

• Just run the forward and the reverse searches and stop as soon as
they meet. This does not work, however.

• We say that ρt and ρs are consistent if for all arcs (v ,w), `ρt (v ,w) in
the original graph is equal to `ρs (w , v) in the reverse graph.
→ρt + ρs = const

• If they are not, the forward and the reverse searches use different
length functions. Therefore when the searches meet, we have no
guarantee that the shortest path has been found.

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 37/ 42

Basic heuristics Comparison

Bidirectional lower-bounding algorithms

There are two possibilities

1 Develop a new termination condition - Symmetric Approach

2 Use consistent potential functions - Consistent Approach

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 38/ 42

Basic heuristics Comparison

Bidirectional lower-bounding algorithms

Symmetric Approach

1 Each time a forward scans an arc (v ,w) such that w is already
scanned by the reverse search

• See if the concatenation of the s − t path (s − v , (v ,w),w − t) is
shorter than best s − t path found so far

• Update the best path and its length, µ, if needed

2 Do the corresponding updates during the reverse search

3 Stop when one of the searches is about to scan a vertex v with
k(v) ≥ µ

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 39/ 42

Basic heuristics Comparison

Bidirectional lower-bounding algorithms

Consistent Approach

1 Let Πt and Πs be feasible potential functions giving lower bounds to
the source and from the sink.

2 Use ρt(v) = Πt(v)−Πs(v)
2 and ρs(v) = Πs(v)−Πt(v)

2

3 These two potential functions are consistent

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 40/ 42

Basic heuristics Comparison

References

• M.Luby, P.Ragde
A Bidirectional shortest-path algorithm with good average-case
behabior
Algorithmica, 1989

• A.V.Goldberg, C.Harrelson
Computing the shortest path: A? search meets grapth theory
Microsoft research, 2003

• T.Pajor
Goal Directed Speed-Up Techniques for Shortest Path Queries
in Timetable Networks
2008

• R.Bauer, D.Delling, P.Sanders, D.Schieferdecker, D.Schultes,
D.Wagner
Combining Hierarchical and Goal-Directed Speed-Up
Techniques for Dijkstra’s Algorithm
Universitut Karlsruhe, 2008

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 41/ 42

Basic heuristics Comparison

Thank you!

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 42/ 42

	Introduction
	Repetition of Dijkstra
	Definition of a Random Graph
	Analysis of Unidirectional Search

	Basic heuristics
	Bidirectional search
	Goal-directed search
	Comparison

