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Introduction

Introduction

Problems

• Network flow

• Approximations to the traveling salesman problem

• Problem-solving systems in artificial intelligence

Realization: providing driving directions

• Mapquest

• Yahoo! Maps

• Microsoft MapPoint

• Some GPS devices
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Introduction

Introduction

Yahoo! Maps
http://maps.yahoo.com/
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Introduction Repetition of Dijkstra

Q.insert(s, 0)
while not Q.isEmpty() do

v ← Q.dequeue()
if v = t then

// shortest path found
return

end
forall outgoing edges e = (v ,w) do

if w is a new node then
Q.insert(w , dist(v) + w(e))
pre(w)← v

end
else

if dist(v) + w(e) ≤ dist(w) then
Q.decreaseKey(w , dist(w) + w(e))
pre(w)← v

end

end

end

end
// no shortest path found
stop
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Introduction Definition of a Random Graph

Definition of a Random Graph

For expository purposes we use the following probabilistic model:

1 The graph is a complete directed graph with n nodes.

2 Using an exponential distribution: the mean length of an edge is 1/λ
for all n, or Pr [`e ≤ x ] = 1− exp−λx

3 Exponential distribution is memoryless:
Pr [`e ≤ x + y |`e ≥ x ] = Pr [`e ≤ y ] for all x , y ≥ 0.
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Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

We need to study the distribution of the number of edges discovered
before d is added to S.

• Consider a point when L = t and k edges e1, e2, . . . , ek are active.
• Suppose that ei was activated when L = xi
• Then it’s known that `i ≥ t − xi .
• Of these edges, the one next discovered is the one that minimize
`i + x

• But, for any y ≥ 0:

Pr [xi + `i ≤ y |`i ≥ t − xi ] = Pr [`i ≤ (t − xi ) + y − t|`i ≥ t − xi ]

= Pr [`i ≤ y − t]

• This probability is the same for all edges ei because each `i is
independently chosen from a common exponential distribution.

• Thus each ei is equally likely to be the next one discovered.
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Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

Let the random variable X be the number of nodes in S at the end
of the algorithm. Then

Pr(X = k) =
1

(n − 1)
, for 2 ≤ k ≤ n (1)

E (X ) = Θ(n) (2)
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Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

Proof.

• We say the algorithm is in stage k when |S | = k

• In stage k there are k(n − k) external edges leaving S , of which only
k go to d

• The probability that d is added to S in stage k is 1/(n − k)

• Using induction on k : Pr(X = k) = 1/(n − 1) for k = 2, 3, . . . , n

• It follows that E (X ) = 1 + (n/2)
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Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

The expected number of edge discoveries in unidirectional search,
both internal and external, is Θ(n).
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Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

Proof.

• Let Yi be the number of internal edges discovered in stage i

• In stage i there are i(n − i) external(good) edges active, and at most
i2 internal(bad) edges active

• The probability that a bad edge is next discovered is at most i/n

• E [Yi ] ≤ i(n − i)

• E [Z ] ≤ n

• The number of edges discovered (internal and external) is O(n)
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Introduction Analysis of Unidirectional Search

Analysis of Unidirectional Search

What improvements can you suggest?

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 12/ 42



Basic heuristics Bidirectional search

Basic heuristics

• For the single pair shortest path problem, 2 techniques will be
presented:

1 Bidirectional search
2 Goal-Directed search
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Basic heuristics Bidirectional search

Bidirectional search

Bidirectional search

• Definition

• Analysis
• Analysis of Phase I
• Analysis of Phase II

• Applications
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Basic heuristics Bidirectional search

Bidirectional search

The bidirectional search algorithm proceeds in two phases.

1 Phase I alternately adds one node to S and one node to D,
continuing until an edge crosing from S to D is drawn

2 Phase II finds a minimum path from S to D
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Basic heuristics Bidirectional search

Bidirectional search

• After all Dijkstra iterations, for every node u not inside Q, L(u) is the
length of the shortest s − u − path.

• At the same time we could execute another Dijkstra on the graph
with reversed arcs. Now we have the length of the shortest
v − d − path for each node v not in this second priority queue too.

• When a node gets outside both priority queues, we know the shortest
path.

• A degree of freedom in this method is the choice whether a forward or
backward iteration is executed.

• Simply alternate or choose the one with lower minimum d in the
queue are examples of strategies.
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Basic heuristics Bidirectional search

Bidirectional search: Phase I
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Basic heuristics Bidirectional search

Bidirectional search: Phase I

• Let X be the number of stages in Phase I

• Then E [X ] = Θ(
√
n)

• The total number of edges discovered in Phase I is bounded by 2X
plus the number of internal edges that are discovered

• The expected number of internal edges discovered in Phase I is
O(1)
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Basic heuristics Bidirectional search

Bidirectional search: Phase II

In general, the s − d path P found at the end of Phase I is not
necessarily the shortest s − d path.

• The shortest s − d path lies entirely within the search trees associated
with S and D except for at most one cross-edge.

• The aim of Phase II is to find the shortest path among this restricted
set of paths.
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Basic heuristics Bidirectional search

Bidirectional search: Phase II

Phase II is a process of node elimination.

1 Let v be the last node added to D at Phase I and tv be the value of
LD

2 We increase LS until LS + tv ≥ U, where U = LS + LD at the end of
Phase I

3 At this point, the length of any undiscovered path from s to d via v
is at least LS + tv ⇒ we can eliminate v from D

4 We then increase LD until we can eliminate the last node added to S
in Phase I
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Basic heuristics Bidirectional search

Bidirectional search: Phase II

The expected number of edges discovered during Phase II is O(
√
n).
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Basic heuristics Bidirectional search

Bidirectional search: Implementation Details

Unidirectional Search

1 Each queue operation takes O(log n) time

2 The expected running time is O(n log n)

Bidirectional Search

1 Each queue operation takes O(log n) time

2 The expected running time is O(
√
n log n)
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Basic heuristics Bidirectional search

Bidirectional search: Implementation Details

Unidirectional Search

1 Algorithm searches a ball with s in the center and d on the boundary

Bidirectional Search

1 Algorithm searches two touching balls centered at s and d .
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Basic heuristics Goal-directed search

Goal-directed search

Goal-directed search

• Definitions

• Computing lower bounds

• Landmark selection
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Basic heuristics Goal-directed search

Goal-directed search

Keynotes

1 Modifies the priority of active nodes to change the order in which the
nodes are processed.

2 Adds to the priority dist(u) a potential ρt : V → <+
0 depending on

the target t of the search.

3 Changes the edge lengths such that the search is given towards the
target t

4 The weight of an edge (u, v) ∈ E is replaced by
`′(u, v) := `(u, v)− ρt(u) + ρt(v)

5 Use Dijkstra with the new weights.
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Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Obtaining feasible potentials

• Euclidean Distances

• Landmarks

• Distances from Graph Condensation
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Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Euclidean Distances

• Assume a layout L : V → <2 of the graph is available where the
length of an edge is correlated with the Euclidean distance of its end
nodes.

• A feasible potential for a node v can be obtained using the
Euclidean distance ‖L(v)− L(t)‖ to the target t
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Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Landmarks

• A small fixed-sized subset L ⊂ V of landmarks is chosen

• The distance d(v , `) to all nodes ` ∈ L is precomputed and stored, for
all v ∈ V .

• The potential for each landmark

ρ
(`)
t (v) = max{dist(v , `)−dist(t, `), dist(`, t)−dist(`, v)} ≤ dist(v , t).

• The potential ρt(v) := max{ρ(`)
t (v); l ∈ L}.
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Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Why our ALT algorithms work well?
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Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Why our ALT algorithms work well?

• The shortest s − L route consists of:

1 a segment from s to a highway
2 a segment that uses highways only
3 a segment from a highway to L

• The shortest route to t follows the same path

• The lower bound ρ`t has the following property `′(v ,w) = 0

• These arcs will be the first ones the ALT algorithm will scan
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Basic heuristics Goal-directed search

Goal-directed search: Computing lower bounds

Distances from Graph Condensation

• Just run Dijkstra Algorithm on a condensed graph.

• The distances of all v to the target t can be obtained by a single run
of Dijkstra’s Algorithm.

• This distances provide a feasible potential for the time-expanded
graph.
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Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Finding good landmarks is critical for the overall performance of
lower-bounding algorithms.

1 Random Landmark Selection

2 Farthest Landmark Selection

3 Planar Landmark Selection
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Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Random Landmark Selection

The simplest way of selecting landmarks is to select k landmark verticies
at random
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Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Farthest Landmark Selection

• Pick a start vertex and find a vertex v1 that is farthest far away from
it.

• Add v1 to the set landmarks.

• Proceed in iterations, finding a vertex that is farthest away from the
current set of landmarks.
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Basic heuristics Goal-directed search

Goal-directed search: Landmark selection

Planar Landmark Selection

• Find a vertex c closest to the center of the embedding.

• Divide the embedding into k pie-slice sectors centered at c .

• For each sector pick a vertex farthest away from the center.
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Basic heuristics Comparison

Comparison

Kozyntsev A.N.: Bidirectional search and Goal-directed Dijkstra 36/ 42



Basic heuristics Comparison

Bidirectional lower-bounding algorithms

• Just run the forward and the reverse searches and stop as soon as
they meet. This does not work, however.

• We say that ρt and ρs are consistent if for all arcs (v ,w), `ρt (v ,w) in
the original graph is equal to `ρs (w , v) in the reverse graph.
→ρt + ρs = const

• If they are not, the forward and the reverse searches use different
length functions. Therefore when the searches meet, we have no
guarantee that the shortest path has been found.
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Basic heuristics Comparison

Bidirectional lower-bounding algorithms

There are two possibilities

1 Develop a new termination condition - Symmetric Approach

2 Use consistent potential functions - Consistent Approach
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Basic heuristics Comparison

Bidirectional lower-bounding algorithms

Symmetric Approach

1 Each time a forward scans an arc (v ,w) such that w is already
scanned by the reverse search

• See if the concatenation of the s − t path (s − v , (v ,w),w − t) is
shorter than best s − t path found so far

• Update the best path and its length, µ, if needed

2 Do the corresponding updates during the reverse search

3 Stop when one of the searches is about to scan a vertex v with
k(v) ≥ µ
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Basic heuristics Comparison

Bidirectional lower-bounding algorithms

Consistent Approach

1 Let Πt and Πs be feasible potential functions giving lower bounds to
the source and from the sink.

2 Use ρt(v) = Πt(v)−Πs(v)
2 and ρs(v) = Πs(v)−Πt(v)

2

3 These two potential functions are consistent
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Thank you!
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