Distance Labelings

Ferienakademie im Sarntal - Course 2
 Distance Problems: Theory and Praxis

Stephan M. Günther
Fakultät für Informatik
TU München

September 23, 2010

Universität Stuttgart

Outline

(1) Motivation
(2) Dominating sets and collections
(3) An upper bound for general graphs
(4) Summary

Motivation

What is distance labeling?

Given a graph $G=(V, E), G \in \mathcal{G}$ which belongs to a specific class \mathcal{G} of graphs. A distance labeling $\langle L, f\rangle$ consists of

- vertex labels $L(u, G)$ for all vertices $u \in V$ and a
- distance decoder f such that

$$
f(L(u, G), L(v, G))=d(u, v) \quad \forall u, v \in V .
$$

Motivation

What is distance labeling?

Given a graph $G=(V, E), G \in \mathcal{G}$ which belongs to a specific class \mathcal{G} of graphs. A distance labeling $\langle L, f\rangle$ consists of

- vertex labels $L(u, G)$ for all vertices $u \in V$ and a
- distance decoder f such that

$$
f(L(u, G), L(v, G))=d(u, v) \quad \forall u, v \in V .
$$

Example:

Motivation

What is distance labeling?

Given a graph $G=(V, E), G \in \mathcal{G}$ which belongs to a specific class \mathcal{G} of graphs. A distance labeling $\langle L, f\rangle$ consists of

- vertex labels $L(u, G)$ for all vertices $u \in V$ and a
- distance decoder f such that

$$
f(L(u, G), L(v, G))=d(u, v) \quad \forall u, v \in V .
$$

Example:

Motivation

What is distance labeling?

Given a graph $G=(V, E), G \in \mathcal{G}$ which belongs to a specific class \mathcal{G} of graphs. A distance labeling $\langle L, f\rangle$ consists of

- vertex labels $L(u, G)$ for all vertices $u \in V$ and a
- distance decoder f such that

$$
f(L(u, G), L(v, G))=d(u, v) \quad \forall u, v \in V .
$$

Example:

Motivation

What is distance labeling?

Given a graph $G=(V, E), G \in \mathcal{G}$ which belongs to a specific class \mathcal{G} of graphs. A distance labeling $\langle L, f\rangle$ consists of

- vertex labels $L(u, G)$ for all vertices $u \in V$ and a
- distance decoder f such that

$$
f(L(u, G), L(v, G))=d(u, v) \quad \forall u, v \in V .
$$

Example:

Motivation

Complexity:

For an n-vertex graph $G=(V, E)$ the previous example uses

- labels $L(u, G)$ of length $|L(u, G)| \in \mathcal{O}(|n \cdot \log n|)$
- containing the distances $d(u, v)$ to all other vertices $v \in V$
- which makes decoding possible in $\mathcal{O}(1)$.

Are better labeling schemes available?

- Label size linear in n at cost of decoding time?
- What about upper and lower bounds for label length?

Outline

(1) Motivation

(2) Dominating sets and collections

(3) An upper bound for general graphs

(4) Summary

Dominating set

Given a general, connected, and undirected graph $G=(V, E)$ with unit edge weights, we call $S \subseteq V \rho$-dominating set for G if

$$
\forall v \in V \quad \exists w \in S: d(v, w) \leq \rho
$$

Dominating set

Given a general, connected, and undirected graph $G=(V, E)$ with unit edge weights, we call $S \subseteq V \rho$-dominating set for G if

$$
\forall v \in V \quad \exists w \in S: d(v, w) \leq \rho
$$

Example:

Dominating set

Given a general, connected, and undirected graph $G=(V, E)$ with unit edge weights, we call $S \subseteq V \rho$-dominating set for G if

$$
\forall v \in V \quad \exists w \in S: d(v, w) \leq \rho
$$

Example:

Dominating set

Given a general, connected, and undirected graph $G=(V, E)$ with unit edge weights, we call $S \subseteq V \rho$-dominating set for G if

$$
\forall v \in V \quad \exists w \in S: d(v, w) \leq \rho
$$

Example:

Dominating set

Given a general, connected, and undirected graph $G=(V, E)$ with unit edge weights, we call $S \subseteq V \rho$-dominating set for G if

$$
\forall v \in V \quad \exists w \in S: d(v, w) \leq \rho
$$

Example:

$\left(S_{0}, \rho=3\right)=\{6\}$
$\left(S_{1}, \rho=2\right)=\{1,10\}$
$\left(S_{2}, \rho=1\right)=\{1,8,10\}$
$\left(S_{3}, \rho=0\right)=V$

Dominator of a vertex

Given a graph $G=(V, E)$, we call vertex $w \in S$ dominator of $v \in V$ if

$$
w=\operatorname{dom}_{S}(v)=\arg \min _{c} d(v, w)
$$

$$
w \in S
$$

Dominator of a vertex

Given a graph $G=(V, E)$, we call vertex $w \in S$ dominator of $v \in V$ if

$$
w=\operatorname{dom}_{S}(v)=\underset{w \in S}{\arg \min } d(v, w) .
$$

Example:

Dominator of a vertex

Given a graph $G=(V, E)$, we call vertex $w \in S$ dominator of $v \in V$ if

$$
w=\operatorname{dom}_{S}(v)=\underset{w \in S}{\arg \min } d(v, w)
$$

Example:

Dominator of a vertex

Given a graph $G=(V, E)$, we call vertex $w \in S$ dominator of $v \in V$ if

$$
w=\operatorname{dom}_{S}(v)=\underset{w \in S}{\arg \min } d(v, w)
$$

Example:

Dominator of a vertex

Given a graph $G=(V, E)$, we call vertex $w \in S$ dominator of $v \in V$ if

$$
w=\operatorname{dom}_{S}(v)=\underset{w \in S}{\arg \min } d(v, w)
$$

Example:

Distance between dominators

Lemma: For every two vertices $x, y \in V$ holds:
(1) $d\left(d o m_{S}(x), \operatorname{dom}_{S}(y)\right)-2 \rho \leq d(x, y) \leq d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)+2 \rho$
(2) $d(x, y)$ can be derived from

- the radius ρ around the dominators,
- the distance $d(x, y) \bmod (4 \rho+1)$, and
- the distance between domintors $d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)$

Distance between dominators

Lemma: For every two vertices $x, y \in V$ holds:
(1) $d\left(d o m_{S}(x), \operatorname{dom}_{S}(y)\right)-2 \rho \leq d(x, y) \leq d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)+2 \rho$
(2) $d(x, y)$ can be derived from

- the radius ρ around the dominators,
- the distance $d(x, y) \bmod (4 \rho+1)$, and
- the distance between domintors $d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)$

Distance between dominators

Lemma: For every two vertices $x, y \in V$ holds:
(1) $d\left(d o m_{S}(x), \operatorname{dom}_{S}(y)\right)-2 \rho \leq d(x, y) \leq d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)+2 \rho$
(2) $d(x, y)$ can be derived from

- the radius ρ around the dominators,
- the distance $d(x, y) \bmod (4 \rho+1)$, and
- the distance between domintors $d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)$

Distance between dominators

Lemma: For every two vertices $x, y \in V$ holds:
(1) $d\left(d o m_{S}(x), \operatorname{dom}_{S}(y)\right)-2 \rho \leq d(x, y) \leq d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)+2 \rho$
(2) $d(x, y)$ can be derived from

- the radius ρ around the dominators,
- the distance $d(x, y) \bmod (4 \rho+1)$, and
- the distance between domintors $d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)$

Distance between dominators

Lemma: For every two vertices $x, y \in V$ holds:
(1) $d\left(d o m_{S}(x), \operatorname{dom}_{S}(y)\right)-2 \rho \leq d(x, y) \leq d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)+2 \rho$
(2) $d(x, y)$ can be derived from

- the radius ρ around the dominators,
- the distance $d(x, y) \bmod (4 \rho+1)$, and
- the distance between domintors $d\left(\operatorname{dom}_{S}(x), \operatorname{dom}_{S}(y)\right)$

Calculating dominating sets

Finding a minimum dominating set is $\mathcal{N} \mathcal{P}$-hard. It might be a good idea to avoid this...

Calculating dominating sets

Finding a minimum dominating set is $\mathcal{N} \mathcal{P}$-hard. It might be a good idea to avoid this...

Instead, find a dominating set which is "small enough":

- Using a BFS, construct a spanning tree T on $G=(V, E)$.
- Let h denote the height of T. Divide V into disjoint sets T_{i} for $i \in\{0, \ldots, h\}$ according to their level in T
- Merge T_{i} into $\rho+1$ disjoint sets $D_{i}=\bigcup_{j \in\{0, \ldots, h\}} T_{i+j(\rho+1)}$.

Calculating dominating sets

Step 1: Find the spanning tree T

Calculating dominating sets

Step 1: Find the spanning tree T

Calculating dominating sets

Step 1: Find the spanning tree T

Calculating dominating sets

Step 1: Find the spanning tree T

Calculating dominating sets

Step 2: Start at a not yet dominated leaf in maximum depth

Calculating dominating sets

Step 3: Go up ρ edges and add this vertex the dominating set ($\rho=3$)

Calculating dominating sets

Step 3: Go up ρ edges and add this vertex the dominating set ($\rho=3$)

Vertex 9 dominates itself and the subtree rooted at 9 (at least $\rho+1$ vertices)

Calculating dominating sets

Step 3: Repeat steps 2 and 3 until all vertices are dominated

Calculating dominating sets

Size of dominating sets

Lemma: For every n-vertex connected graph G and integer $\rho \geq 0$, there exists a ρ-dominating set S such that

$$
|S| \leq \max \left\{\left\lfloor\frac{n}{\rho+1}\right\rfloor, 1\right\} .
$$

Calculating dominating sets

Size of dominating sets

Lemma: For every n-vertex connected graph G and integer $\rho \geq 0$, there exists a ρ-dominating set S such that

$$
|S| \leq \max \left\{\left\lfloor\frac{n}{\rho+1}\right\rfloor, 1\right\} .
$$

Proof:

- Each element in S dominates at least $\rho+1$ vertices in V :

$$
\Rightarrow|S| \leq\left\lfloor\frac{n}{\rho+1}\right\rfloor
$$

- For $\rho \geq n-1$, any single vertex $v \in V$ forms a ρ-dominating set $\Rightarrow|S| \geq 1$

Dominating collection

Given a decreasing sequence ρ_{i} with $0 \leq i \leq k$ such that $\rho_{k}=0$, we call $\mathcal{S}=\left\{\left(S_{i}, \rho_{i}\right) \mid 0 \leq i \leq k\right\}$ a dominating collection.

Dominating collection

Given a decreasing sequence ρ_{i} with $0 \leq i \leq k$ such that $\rho_{k}=0$, we call $\mathcal{S}=\left\{\left(S_{i}, \rho_{i}\right) \mid 0 \leq i \leq k\right\}$ a dominating collection.

Example:

$\left(S_{0}, \rho=3\right)=\{6\}$
$\left(S_{1}, \rho=2\right)=\{1,10\}$
$\left(S_{2}, \rho=1\right)=\{1,8,10\}$
$\left(S_{3}, \rho=0\right)=V$

Dominating collection

Given a decreasing sequence ρ_{i} with $0 \leq i \leq k$ such that $\rho_{k}=0$, we call $\mathcal{S}=\left\{\left(S_{i}, \rho_{i}\right) \mid 0 \leq i \leq k\right\}$ a dominating collection.

Example:

$$
\begin{aligned}
& \left(S_{0}, \rho=3\right)=\{6\} \\
& \left(S_{1}, \rho=2\right)=\{1,10\} \\
& \left(S_{2}, \rho=1\right)=\{1,8,10\} \\
& \left(S_{3}, \rho=0\right)=V
\end{aligned}
$$

Note: The sequence of ρ_{i} decreases $\left(\rho_{k}=0\right)$ while $\left|S_{i}\right|$ increases.

Outline

(2) Dominating sets and collections

(3) An upper bound for general graphs

(4) Summary

General graphs

The trivial labels presented in the introduction stored the distances to all other vertices, resulting in

- size $\mathcal{O}(n \cdot \log n)$ per label and
- decoding time in $\mathcal{O}(1)$.

General graphs

The trivial labels presented in the introduction stored the distances to all other vertices, resulting in

- size $\mathcal{O}(n \cdot \log n)$ per label and
- decoding time in $\mathcal{O}(1)$.

We now discuss a labeling scheme which allows for

- labels in $\mathcal{O}(n)$ and
- decoding in $\mathcal{O}(\log \log n)$.

Building the labels

Building the labels

Define (don't ask why):

- $k=\lceil\log \log n\rceil$
- $I=\{0,1, \ldots, k\}$
- $\rho_{i}=2^{k-i}-1$

Building the labels

Determine a dominating collection $\mathcal{S}=\left\{\left(S_{i}, \rho_{i}\right) \mid i \in I\right\}$:

- $\rho_{0}=3 \Rightarrow$
- $\rho_{1}=1 \Rightarrow$
- $\rho_{2}=0 \Rightarrow$

Building the labels

Determine a dominating collection $\mathcal{S}=\left\{\left(S_{i}, \rho_{i}\right) \mid i \in I\right\}$:

- $\rho_{0}=3 \Rightarrow S_{0}=\{1,11,14\}$
- $\rho_{1}=1 \Rightarrow$
- $\rho_{2}=0 \Rightarrow$

Building the labels

Determine a dominating collection $\mathcal{S}=\left\{\left(S_{i}, \rho_{i}\right) \mid i \in I\right\}$:

- $\rho_{0}=3 \Rightarrow S_{0}=\{1,11,14\}$
- $\rho_{1}=1 \Rightarrow S_{1}=\{1,5,6,7,9,11,14\}$
- $\rho_{2}=0 \Rightarrow$

Building the labels

Determine a dominating collection $\mathcal{S}=\left\{\left(S_{i}, \rho_{i}\right) \mid i \in I\right\}$:

- $\rho_{0}=3 \Rightarrow S_{0}=\{1,11,14\}$
- $\rho_{1}=1 \Rightarrow S_{1}=\{1,5,6,7,9,11,14\}$
- $\rho_{2}=0 \Rightarrow S_{2}=V$

Building the labels

Step 0 (initialization): $i=0, S_{0}=\{1,11,14\}, \rho_{0}=3$
Create labels $L^{0}(u)$ for all $u \in S_{0}$ consisting of two fields containing

- the rank order (u) in the ordering of S_{0} and
- the list $\{d(u, v)\}_{v \in S_{0}}$ according to the ordering of S_{0}.

Building the labels

Step 0 (initialization): $i=0, S_{0}=\{1,11,14\}, \rho_{0}=3$
Create labels $L^{0}(u)$ for all $u \in S_{0}$ consisting of two fields containing

- the rank $\operatorname{order}(u)$ in the ordering of S_{0} and
- the list $\{d(u, v)\}_{v \in S_{0}}$ according to the ordering of S_{0}.

$$
L^{0}(1)=(0,0,4,4)
$$

Building the labels

Step 0 (initialization): $i=0, S_{0}=\{1,11,14\}, \rho_{0}=3$
Create labels $L^{0}(u)$ for all $u \in S_{0}$ consisting of two fields containing

- the rank order (u) in the ordering of S_{0} and
- the list $\{d(u, v)\}_{v \in S_{0}}$ according to the ordering of S_{0}.

$$
L^{0}(1)=(0,0,4,4)
$$

Building the labels

Step 1: $i=1, S_{1}=\{1,5,6,7,9,11,14\}, \rho_{1}=1$
Create labels $L^{1}(u)$ for all $u \in S_{1}$ consisting of three fields containing

- the label $L^{0}\left(d o m_{S_{0}}(u)\right)$,
- the rank order (u) in the ordering of S_{1}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{0}+1\right)\right\}_{v \in S_{1}}$ according to the ordering of S_{1}.

Building the labels

Step 1: $i=1, S_{1}=\{1,5,6,7,9,11,14\}, \rho_{1}=1$
Create labels $L^{1}(u)$ for all $u \in S_{1}$ consisting of three fields containing

- the label $L^{0}\left(\operatorname{dom}_{S_{0}}(u)\right)$,
- the rank order (u) in the ordering of S_{1}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{0}+1\right)\right\}_{v \in S_{1}}$ according to the ordering of S_{1}.

$$
L^{1}(5)=L^{0}\left(\operatorname{dom}_{S_{0}}(5)\right) \circ(1,2,0,2,2,2,3,4)
$$

Building the labels

Step 1: $i=1, S_{1}=\{1,5,6,7,9,11,14\}, \rho_{1}=1$
Create labels $L^{1}(u)$ for all $u \in S_{1}$ consisting of three fields containing

- the label $L^{0}\left(d o m_{S_{0}}(u)\right)$,
- the rank $\operatorname{order}(u)$ in the ordering of S_{1}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{0}+1\right)\right\}_{v \in S_{1}}$ according to the ordering of S_{1}.

$$
L^{1}(5)=L^{0}\left(\operatorname{dom}_{S_{0}}(5)\right) \circ(1,2,0,2,2,2,3,4)
$$

Building the labels

Step 1: $i=1, S_{1}=\{1,5,6,7,9,11,14\}, \rho_{1}=1$
Create labels $L^{1}(u)$ for all $u \in S_{1}$ consisting of three fields containing

- the label $L^{0}\left(d o m_{S_{0}}(u)\right)$,
- the rank order (u) in the ordering of S_{1}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{0}+1\right)\right\}_{v \in S_{1}}$ according to the ordering of S_{1}.

$$
L^{1}(5)=L^{0}\left(\operatorname{dom}_{S_{0}}(5)\right) \circ(1,2,0,2,2,2,3,4)
$$

Building the labels

Step 2: $i=2, S_{2}=V, \rho_{2}=0$
Create labels $L^{2}(u)$ for all $u \in S_{2}$ consisting of three fields containing

- the label $L^{1}\left(\operatorname{dom}_{S_{1}}(u)\right)$,
- the rank order (u) in the ordering of S_{2}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{1}+1\right)\right\}_{v \in S_{2}}$ according to the ordering of S_{2}.

Building the labels

Step 2: $i=2, S_{2}=V, \rho_{2}=0$
Create labels $L^{2}(u)$ for all $u \in S_{2}$ consisting of three fields containing

- the label $L^{1}\left(\operatorname{dom}_{S_{1}}(u)\right)$,
- the rank order (u) in the ordering of S_{2}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{1}+1\right)\right\}_{v \in S_{2}}$ according to the ordering of S_{2}.

$$
L^{2}(1)=L^{1}\left(\operatorname{dom}_{S_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
$$

Building the labels

Step 2: $i=2, S_{2}=V, \rho_{2}=0$
Create labels $L^{2}(u)$ for all $u \in S_{2}$ consisting of three fields containing

- the label $L^{1}\left(\operatorname{dom}_{S_{1}}(u)\right)$,
- the rank $\operatorname{order}(u)$ in the ordering of S_{2}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{1}+1\right)\right\}_{v \in S_{2}}$ according to the ordering of S_{2}.

$$
L^{2}(1)=L^{1}\left(\operatorname{dom}_{S_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
$$

Building the labels

Step 2: $i=2, S_{2}=V, \rho_{2}=0$
Create labels $L^{2}(u)$ for all $u \in S_{2}$ consisting of three fields containing

- the label $L^{1}\left(\operatorname{dom}_{S_{1}}(u)\right)$,
- the rank order (u) in the ordering of S_{2}, and
- the list $\left\{d(u, v) \bmod \left(4 \rho_{1}+1\right)\right\}_{v \in S_{2}}$ according to the ordering of S_{2}.

$$
L^{2}(1)=L^{1}\left(\operatorname{dom}_{S_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
L^{2}(1)=L^{1}\left(\operatorname{dom}_{S_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
L^{2}(1)=L^{1}\left(\operatorname{dom}_{S_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
\begin{aligned}
L^{2}(1) & =L^{1}\left(\operatorname{dom}_{S_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
& =L^{0}\left(\operatorname{dom}_{S_{0}}(1)\right) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
\end{aligned}
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
\begin{aligned}
L^{2}(1) & =L^{1}\left(\operatorname{dom}_{S_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
& =L^{0}\left(\operatorname{dom}_{S_{0}}(1)\right) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
\end{aligned}
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
\begin{aligned}
L^{2}(1) & =L^{1}\left(\operatorname{dom}_{s_{1}}(1)\right) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
& =L^{0}\left(\operatorname{dom}_{S_{0}}(1)\right) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
& =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4)
\end{aligned}
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
L^{2}(13)=L^{1}\left(\operatorname{dom}_{S_{1}}(13)\right) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
L^{2}(13)=L^{1}\left(\operatorname{dom}_{S_{1}}(13)\right) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
\begin{aligned}
L^{2}(13) & =L^{1}\left(\operatorname{dom}_{S_{1}}(13)\right) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0) \\
& =L^{0}\left(\operatorname{dom}_{S_{0}}(11)\right) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
\begin{aligned}
L^{2}(13) & =L^{1}\left(\operatorname{dom}_{S_{1}}(13)\right) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0) \\
& =L^{0}\left(\operatorname{dom}_{S_{0}}(11)\right) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Building the labels

Let's explicitly construct the labels of vertices 1 and 13 for later use:

$$
\begin{aligned}
L^{2}(13) & =L^{1}\left(\operatorname{dom}_{S_{1}}(13)\right) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0) \\
& =L^{0}\left(\operatorname{dom}_{S_{0}}(11)\right) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0) \\
& =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Maximum length of labels

What's the maximum length of a labels?

Maximum length of labels

What's the maximum length of a labels?

- In all steps we had to save the rank order (u)
$\Rightarrow \mathcal{O}(k \log n)$ bits

Maximum length of labels

What's the maximum length of a labels?

- In all steps we had to save the rank order (u)
$\Rightarrow \mathcal{O}(k \log n)$ bits
- Step 0: list $\{d(u, v)\}_{v \in S_{0}}$ according to the ordering of S_{0}. $\Rightarrow\left|S_{0}\right| \log n$ bits

Maximum length of labels

What's the maximum length of a labels?

- In all steps we had to save the rank $\operatorname{order}(u)$
$\Rightarrow \mathcal{O}(k \log n)$ bits
- Step 0: list $\{d(u, v)\}_{v \in S_{0}}$ according to the ordering of S_{0}. $\Rightarrow\left|S_{0}\right| \log n$ bits
- Step $1 \leq i \leq k$:
- the label $L^{i-1}\left(\operatorname{dom}_{S_{i-1}}(u)\right)$,
- the list $\left\{d(u, v) \bmod \left(4 \rho_{i-1}+1\right)\right\}_{v \in S_{i}}$ according to the ordering of S_{i}.
$\Rightarrow \sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)$ bits

Maximum length of labels

What's the maximum length of a labels?

- In all steps we had to save the rank order (u)
$\Rightarrow \mathcal{O}(k \log n)$ bits
- Step 0: list $\{d(u, v)\}_{v \in S_{0}}$ according to the ordering of S_{0}. $\Rightarrow\left|S_{0}\right| \log n$ bits
- Step $1 \leq i \leq k$:
- the label $L^{i-1}\left(d_{o m}^{S_{i-1}}(u)\right)$,
- the list $\left\{d(u, v) \bmod \left(4 \rho_{i-1}+1\right)\right\}_{v \in S_{i}}$ according to the ordering of S_{i}.
$\Rightarrow \sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)$ bits

$$
L_{\max } \leq\left|S_{0}\right| \log n+\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)+\mathcal{O}(k \log n)
$$

Maximum length of labels

Recall: $\rho_{i}=2^{k-i}-1,\left|S_{i}\right| \leq \frac{n}{2^{k-i}}, k=\lceil\log \log n\rceil$

$$
L_{\max } \leq\left|S_{0}\right| \log n+\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)+\mathcal{O}(k \log n)
$$

Maximum length of labels

Recall: $\rho_{i}=2^{k-i}-1,\left|S_{i}\right| \leq \frac{n}{2^{k-i}}, k=\lceil\log \log n\rceil$

$$
L_{\max } \leq\left|S_{0}\right| \log n+\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)+\mathcal{O}(k \log n)
$$

$\left|S_{0}\right| \log n \leq \frac{n}{2^{k}} \log n=\frac{n}{2^{\log \log n}} \log n=\frac{n}{\log n} \log n=n$

Maximum length of labels

Recall: $\rho_{i}=2^{k-i}-1,\left|S_{i}\right| \leq \frac{n}{2^{k-i}}, k=\lceil\log \log n\rceil$

$$
L_{\max } \leq\left|S_{0}\right| \log n+\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)+\mathcal{O}(k \log n)
$$

$\left|S_{0}\right| \log n \leq \frac{n}{2^{k}} \log n=\frac{n}{2^{\log \log n}} \log n=\frac{n}{\log n} \log n=n$

$$
\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)=\ldots \text { see slide no. } 33 \ldots \leq 8 n
$$

Maximum length of labels

Recall: $\rho_{i}=2^{k-i}-1,\left|S_{i}\right| \leq \frac{n}{2^{k-i}}, k=\lceil\log \log n\rceil$

$$
L_{\max } \leq\left|S_{0}\right| \log n+\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)+\mathcal{O}(k \log n)
$$

$\left|S_{0}\right| \log n \leq \frac{n}{2^{k}} \log n=\frac{n}{2^{\log \log n}} \log n=\frac{n}{\log n} \log n=n$
$\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)=\ldots$ see slide no. $33 \ldots \leq 8 n$
$\mathcal{O}(k \log n) \in \mathcal{O}(\log \log n \log n)$

Maximum length of labels

Recall: $\rho_{i}=2^{k-i}-1,\left|S_{i}\right| \leq \frac{n}{2^{k-i}}, k=\lceil\log \log n\rceil$

$$
L_{\max } \leq\left|S_{0}\right| \log n+\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right)+\mathcal{O}(k \log n)
$$

$$
L_{\max } \leq 9 n+\mathcal{O}(\log \log n \log n)
$$

Time bounds to create labels

- The dominating collection \mathcal{S} can be determined in $\mathcal{O}\left(n^{2}\right)$, since
- once the BFS is run which takes $\mathcal{O}\left(n^{2}\right)$
- each dominating set S_{i} can be calculated in $\mathcal{O}(n)$.

Time bounds to create labels

- The dominating collection \mathcal{S} can be determined in $\mathcal{O}\left(n^{2}\right)$, since
- once the BFS is run which takes $\mathcal{O}\left(n^{2}\right)$
- each dominating set S_{i} can be calculated in $\mathcal{O}(n)$.
- For the labels we need on each level $1 \leq i \leq k$
- the ordering within each dominating set S_{i} (comes for free) and
- the distances $d(u, v) \bmod (4 \rho+1)$ between all vertices $u, v \in S_{i}$ as well the distances $d(u, v)$ between all vertices in S_{0}.

Time bounds to create labels

- The dominating collection \mathcal{S} can be determined in $\mathcal{O}\left(n^{2}\right)$, since
- once the BFS is run which takes $\mathcal{O}\left(n^{2}\right)$
- each dominating set S_{i} can be calculated in $\mathcal{O}(n)$.
- For the labels we need on each level $1 \leq i \leq k$
- the ordering within each dominating set S_{i} (comes for free) and
- the distances $d(u, v) \bmod (4 \rho+1)$ between all vertices $u, v \in S_{i}$ as well the distances $d(u, v)$ between all vertices in S_{0}.

$$
\Rightarrow \sum_{i=0}^{k}\left|S_{i}\right|^{2}=n^{2} \cdot \sum_{i=0}^{k}\left(\frac{1}{4}\right)^{k-i} \in \mathcal{O}\left(n^{2}\right)
$$

Time bounds to create labels

- The dominating collection \mathcal{S} can be determined in $\mathcal{O}\left(n^{2}\right)$, since
- once the BFS is run which takes $\mathcal{O}\left(n^{2}\right)$
- each dominating set S_{i} can be calculated in $\mathcal{O}(n)$.
- For the labels we need on each level $1 \leq i \leq k$
- the ordering within each dominating set S_{i} (comes for free) and
- the distances $d(u, v) \bmod (4 \rho+1)$ between all vertices $u, v \in S_{i}$ as well the distances $d(u, v)$ between all vertices in S_{0}.

$$
\Rightarrow \sum_{i=0}^{k}\left|S_{i}\right|^{2}=n^{2} \cdot \sum_{i=0}^{k}\left(\frac{1}{4}\right)^{k-i} \in \mathcal{O}\left(n^{2}\right)
$$

Labels can be created in $\mathcal{O}\left(n^{2}\right)$

Decoding labels

Idea:

- The distance $d(x, y)$ for $x, y \in S_{i}$ with $i>0$ can be calculated using the Lemma about distances between dominators once these are known.
- The distance $d\left(x^{\prime}, y^{\prime}\right)$ between dominators of $x^{\prime}, y^{\prime} \in S_{i-1}$ of x, y can be determined recursively.
- Recursion stops if $x^{\prime}, y^{\prime} \in S_{0}$.

Decoding labels

Idea:

- The distance $d(x, y)$ for $x, y \in S_{i}$ with $i>0$ can be calculated using the Lemma about distances between dominators once these are known.
- The distance $d\left(x^{\prime}, y^{\prime}\right)$ between dominators of $x^{\prime}, y^{\prime} \in S_{i-1}$ of x, y can be determined recursively.
- Recursion stops if $x^{\prime}, y^{\prime} \in S_{0}$.

Let's do it by example step by step...

Decoding labels

What's the distance between $x=1$ and $y=13$?

Decoding labels

What's the distance between $x=1$ and $y=13$?
Obtain the labels of x, y and determine their dominators in S_{1}

$$
\begin{aligned}
L^{2}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{2}(13) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Decoding labels

What's the distance between $x=1$ and $y=13$?
Obtain the labels of x, y and determine their dominators in S_{1}

$$
\begin{aligned}
L^{2}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{2}(13) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Decoding labels

What's the distance between $x=1$ and $y=13$?
Obtain the labels of x, y and determine their dominators in S_{1}

$$
\begin{gathered}
L^{2}(1)=(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{2}(13)=(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0) \\
\Rightarrow y^{\prime}=\operatorname{dom}_{S_{1}}(1)=1 \text { and } y^{\prime}=\operatorname{dom}_{S_{1}}(13)=11
\end{gathered}
$$

Decoding labels

Determine $d\left(x^{\prime}, y^{\prime}\right)=d(1,11) \leftarrow$ recursive step

Decoding labels

Determine $d\left(x^{\prime}, y^{\prime}\right)=d(1,11) \leftarrow$ recursive step
Obtain the labels of x^{\prime}, y^{\prime} and determine their dominators in S_{0}

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Decoding labels

Determine $d\left(x^{\prime}, y^{\prime}\right)=d(1,11) \leftarrow$ recursive step
Obtain the labels of x^{\prime}, y^{\prime} and determine their dominators in S_{0}

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Decoding labels

Determine $d\left(x^{\prime}, y^{\prime}\right)=d(1,11) \leftarrow$ recursive step
Obtain the labels of x^{\prime}, y^{\prime} and determine their dominators in S_{0}

$$
\begin{gathered}
L^{1}(1)=(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11)=(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0) \\
\Rightarrow x^{\prime \prime}=\operatorname{dom}_{S_{0}}\left(x^{\prime}\right)=1 \text { and } y^{\prime \prime}=\operatorname{dom}_{S_{0}}\left(y^{\prime}\right)=11
\end{gathered}
$$

Decoding labels

Determine $d\left(x^{\prime \prime}, y^{\prime \prime}\right)=d(1,11) \leftarrow$ another recursive step

Decoding labels

Determine $d\left(x^{\prime \prime}, y^{\prime \prime}\right)=d(1,11) \leftarrow$ another recursive step
Obtain the labels of $x^{\prime \prime}, y^{\prime \prime}$ and determine $d\left(x^{\prime \prime}, y^{\prime \prime}\right)$ directly

$$
\begin{aligned}
L^{0}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{0}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

End of recursion: use rank order $\left(y^{\prime \prime}\right)$ as index in the label of $x^{\prime \prime}$ to determine $d\left(x^{\prime \prime}, y^{\prime \prime}\right)$.

Decoding labels

Determine $d\left(x^{\prime \prime}, y^{\prime \prime}\right)=d(1,11) \leftarrow$ another recursive step
Obtain the labels of $x^{\prime \prime}, y^{\prime \prime}$ and determine $d\left(x^{\prime \prime}, y^{\prime \prime}\right)$ directly

$$
\begin{aligned}
L^{0}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{0}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

End of recursion: use rank order $\left(y^{\prime \prime}\right)$ as index in the label of $x^{\prime \prime}$ to determine $d\left(x^{\prime \prime}, y^{\prime \prime}\right)$.

$$
\Rightarrow d\left(\operatorname{dom}_{S_{0}}\left(x^{\prime}\right), \operatorname{dom}_{S_{0}}\left(y^{\prime}\right)\right)=d\left(x^{\prime \prime}, y^{\prime \prime}\right)=d(1,11)=4
$$

Decoding labels

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Compute $d\left(x^{\prime}, y^{\prime}\right)$ using the lemma about the distance $d\left(x^{\prime \prime}, y^{\prime \prime}\right)$ between dominators:

$$
\begin{aligned}
d\left(x^{\prime \prime}, y^{\prime \prime}\right)-2 \rho_{0} & \leq d\left(x^{\prime}, y^{\prime}\right) \\
-2 & \leq d\left(x^{\prime \prime}, y^{\prime \prime}\right)+2 \rho_{0} \\
\left.x^{\prime}, y^{\prime}\right) & \leq 10 .
\end{aligned}
$$

Decoding labels

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Compute $d\left(x^{\prime}, y^{\prime}\right)$ using the lemma about the distance $d\left(x^{\prime \prime}, y^{\prime \prime}\right)$ between dominators:

$$
\begin{aligned}
d\left(x^{\prime \prime}, y^{\prime \prime}\right)-2 \rho_{0} & \leq d\left(x^{\prime}, y^{\prime}\right) \\
-2 & \leq d\left(x^{\prime \prime}, y^{\prime \prime}\right)+2 \rho_{0} \\
\left.x^{\prime}, y^{\prime}\right) & \leq 10 .
\end{aligned}
$$

Furthermore, we know that $d\left(x^{\prime}, y^{\prime}\right) \bmod \left(4 \rho_{0}+1\right)=d\left(x^{\prime}, y^{\prime}\right) \bmod 13=4$.

Decoding labels

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Compute $d\left(x^{\prime}, y^{\prime}\right)$ using the lemma about the distance $d\left(x^{\prime \prime}, y^{\prime \prime}\right)$ between dominators:

$$
\begin{aligned}
d\left(x^{\prime \prime}, y^{\prime \prime}\right)-2 \rho_{0} & \leq d\left(x^{\prime}, y^{\prime}\right) \leq d\left(x^{\prime \prime}, y^{\prime \prime}\right)+2 \rho_{0} \\
-2 & \leq d\left(x^{\prime}, y^{\prime}\right) \leq 10 .
\end{aligned}
$$

Furthermore, we know that $d\left(x^{\prime}, y^{\prime}\right) \bmod \left(4 \rho_{0}+1\right)=d\left(x^{\prime}, y^{\prime}\right) \bmod 13=4$.

$$
\Rightarrow d\left(\operatorname{dom}_{S_{1}}(x), \operatorname{dom}_{S_{1}}(y)\right)=d\left(x^{\prime}, y^{\prime}\right)=4
$$

Decoding labels

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Compute $d(x, y)$ using the lemma about the distance $d\left(x^{\prime}, y^{\prime}\right)$ between dominators again:

$$
\begin{aligned}
d\left(x^{\prime}, y^{\prime}\right)-2 \rho_{1} & \leq d(x, y) \leq d\left(x^{\prime}, y^{\prime}\right)+2 \rho_{1} \\
2 & \leq d(x, y) \leq 6 .
\end{aligned}
$$

Decoding labels

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Compute $d(x, y)$ using the lemma about the distance $d\left(x^{\prime}, y^{\prime}\right)$ between dominators again:

$$
\begin{aligned}
d\left(x^{\prime}, y^{\prime}\right)-2 \rho_{1} & \leq d(x, y) \leq d\left(x^{\prime}, y^{\prime}\right)+2 \rho_{1} \\
2 & \leq d(x, y) \leq 6 .
\end{aligned}
$$

Furthermore, we know that $d(x, y) \bmod \left(4 \rho_{1}+1\right)=d(x, y) \bmod 5=0$.

Decoding labels

$$
\begin{aligned}
L^{1}(1) & =(0,0,4,4) \circ(0,0,2,2,2,2,4,4) \circ(0,0,1,1,1,2,2,2,3,2,3,4,3,0,4) \\
L^{1}(11) & =(1,4,0,4) \circ(5,4,3,3,2,2,0,4) \circ(12,0,0,4,4,4,4,3,3,3,2,1,4,0,0)
\end{aligned}
$$

Compute $d(x, y)$ using the lemma about the distance $d\left(x^{\prime}, y^{\prime}\right)$ between dominators again:

$$
\begin{aligned}
d\left(x^{\prime}, y^{\prime}\right)-2 \rho_{1} & \leq d(x, y) \leq d\left(x^{\prime}, y^{\prime}\right)+2 \rho_{1} \\
2 & \leq d(x, y) \leq 6 .
\end{aligned}
$$

Furthermore, we know that $d(x, y) \bmod \left(4 \rho_{1}+1\right)=d(x, y) \bmod 5=0$.

$$
\Rightarrow d(x, y)=5
$$

Time needed for decoding

What's the time needed for decoding labels?

- Each step requires to
- obtain the labels and dominators of x and y,
- recursive call to determine the distance between dominators,
- get the rank order (y),
- and use it as pointer to determine $d(x, y) \bmod \rho$.
$\Rightarrow \mathcal{O}(1)$ per step

Time needed for decoding

What's the time needed for decoding labels?

- Each step requires to
- obtain the labels and dominators of x and y,
- recursive call to determine the distance between dominators,
- get the rank order (y),
- and use it as pointer to determine $d(x, y) \bmod \rho$.
$\Rightarrow \mathcal{O}(1)$ per step
- There are at most $k=\lceil\log \log n\rceil$ recursive steps.

Time needed for decoding

What's the time needed for decoding labels?

- Each step requires to
- obtain the labels and dominators of x and y,
- recursive call to determine the distance between dominators,
- get the rank order (y),
- and use it as pointer to determine $d(x, y) \bmod \rho$.
$\Rightarrow \mathcal{O}(1)$ per step
- There are at most $k=\lceil\log \log n\rceil$ recursive steps.

$$
\Rightarrow \text { Decoding in } \mathcal{O}(\log \log n)
$$

Summary

We have seen a distance labeling scheme for general, undirected, and unweighted graphs which allows for

- labels of size $\mathcal{O}(n)$,
- decoding in time $\mathcal{O}(\log \log n)$, and
- creation of labels in time $\mathcal{O}\left(n^{2}\right)$.

Summary

We have seen a distance labeling scheme for general, undirected, and unweighted graphs which allows for

- labels of size $\mathcal{O}(n)$,
- decoding in time $\mathcal{O}(\log \log n)$, and
- creation of labels in time $\mathcal{O}\left(n^{2}\right)$.

A lower bound of $\Omega(n)$ for the label size can also be shown and thus the minimum label size for general graphs is $\Theta(n)$.

Summary

We have seen a distance labeling scheme for general, undirected, and unweighted graphs which allows for

- labels of size $\mathcal{O}(n)$,
- decoding in time $\mathcal{O}(\log \log n)$, and
- creation of labels in time $\mathcal{O}\left(n^{2}\right)$.

A lower bound of $\Omega(n)$ for the label size can also be shown and thus the minimum label size for general graphs is $\Theta(n)$.

Smaller labels are possible for certain classes of graphs, e.g.

- $\Theta\left(\log ^{2} n\right)$ for trees,
- $\mathcal{O}(\sqrt{n} \log n)$ and $\Omega\left(n^{1 / 3}\right)$ for planar graphs, and
- $\Omega(\sqrt{n})$ for bounded degree graphs.

Bibliography

© Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz Distance labeling in graphs Journal of Algorithms, vol. 53, pp. 85-112, 2002.

David Peleg and Eli Upfal
A tradeoff between space and efficiency for routing tables ACM, Journal of the ACM, vol. 53, no. 3, pp. 510-530, 1989.
© David Peleg
Proximity-Preserving Labeling Schemes and Their Applications ACM, Lecture Notes In Computer Science, vol. 1655, pp. 30-41, 1999.

Recall: $\rho_{i}=2^{k-i}-1,\left|S_{i}\right| \leq \frac{n}{2^{k-i}}, \quad k=\lceil\log \log n\rceil$

$$
\begin{aligned}
\sum_{i=1}^{k}\left|S_{i}\right| \log \left(4 \rho_{i-1}+1\right) & =\sum_{i=1}^{k} \frac{n}{2^{k-i}} \log \left(4 \cdot\left(2^{k-i+1}-1\right)+1\right) \\
& =n \cdot \sum_{i=1}^{k} \frac{\log \left(2^{k-i+3}-3\right)}{2^{k-i}} \\
& \leq n \cdot \sum_{i=1}^{k} \frac{k-i+3}{2^{k-i}} \\
& =n \cdot\left(\frac{3}{2^{0}}+\frac{4}{2^{1}}+\frac{5}{2^{2}}+\ldots+\frac{k+2}{2^{k-1}}\right) \\
& =n \cdot \sum_{i=0}^{k-1} \frac{i+3}{2^{i}}
\end{aligned}
$$

$$
\begin{aligned}
=n \cdot\left(\sum_{i=0}^{k-1} \frac{i}{2^{i}}+3 \sum_{i=0}^{k-1} \frac{1}{2^{i}}\right) & =n \cdot\left(\sum_{i=0}^{k-1}\left[\frac{\partial}{\partial x} x^{i+1}\right]_{x=\frac{1}{2}}-\sum_{i=0}^{k-1} \frac{1}{2^{i}}+3 \sum_{i=0}^{k-1} \frac{1}{2^{i}}\right) \\
& =n \cdot\left(\left[\frac{\partial}{\partial x} \sum_{i=0}^{k-1} x^{i+1}\right]_{x=\frac{1}{2}}+2 \sum_{i=0}^{k-1} \frac{1}{2^{i}}\right) \\
& \leq n \cdot\left(\left[\frac{\partial}{\partial x} \sum_{i=0}^{\infty} x^{i+1}\right]_{x=\frac{1}{2}}+2 \sum_{i=0}^{\infty} \frac{1}{2^{i}}\right) \\
& =n \cdot\left(\left[\frac{\partial}{\partial x} \frac{1}{1-x}\right]_{x=\frac{1}{2}}+\frac{2}{1-\frac{1}{2}}\right) \\
& =n \cdot\left(\left[\frac{1}{(1-x)^{2}}\right]_{x=\frac{1}{2}}+4\right)=8 n
\end{aligned}
$$

