Spanners: Quality Measures and Efficient Construction

Ferienakademie im Sarntal - Course 2
 Distance Problems: Theory and Praxis

Dmitriy Traytel

Fakultät für Informatik
TU München
26. September 2010

Outline

(1) Introduction

Definition
Motivation
State-of-the-art
(2) Purely additive $(1,6)$-spanner

Construction
Theoretical considerations
(3) Multiplicative spanners
($2 k-1,0$)-spanner
($k, k-1$)-spanner
Algorithmic properties
4) Conclusion

Spanners

Definition (Spanner)
Let $G=(V, E)$ be an unweighted graph. A subgraph $H=\left(V, E^{\prime}\right)$ of G is called (α, β)-spanner if for all $\boldsymbol{u}, \boldsymbol{v} \in V$ it holds:

$$
\delta_{H}(u, v) \leq \alpha \delta_{G}(u, v)+\beta .
$$

H is called additive if $\alpha=1$ and purely additive if $\alpha=1$ and $\beta \in \mathcal{O}(1)$.

Spanners

Definition (Spanner)

Let $G=(V, E)$ be an unweighted graph. A subgraph $H=\left(V, E^{\prime}\right)$ of G is called (α, β)-spanner if for all $\boldsymbol{u}, \boldsymbol{v} \in V$ it holds:

$$
\delta_{H}(u, v) \leq \alpha \delta_{G}(u, v)+\beta .
$$

H is called additive if $\alpha=1$ and purely additive if $\alpha=1$ and $\beta \in \mathcal{O}(1)$.

Notation

- $n=|V|, m=|E|$
- $\delta_{G}(u, v)$ - length of the shortest path between u and v in G
- $\delta_{G}(X, Y)=\min _{x \in X, y \in Y} \delta(x, y)$
- $\operatorname{diam}(D)=\max _{x, y \in D} \delta(x, y)$

So what are spanners good for?

- calculate approximate distances...

So what are spanners good for?

- calculate approximate distances...
- in a smaller graph constructed from the original graph
- with explicitly given approximation quality bounds

What makes a "good" spanner?

So what are spanners good for?

- calculate approximate distances...
- in a smaller graph constructed from the original graph
- with explicitly given approximation quality bounds

What makes a "good" spanner?

- approximation quality (best case: $\alpha=1, \beta=0$)
- size of the spanner (worst case: $\mathcal{O}\left(n^{2}\right)$)
- construction time (best case: linear)

The spanners zoo

(α, β)	Number of edges	Construction time
$(2 k-1,0)$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}(m)$
$(k-1,2 k-\mathcal{O}(1))$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}\left(m n^{1-1 / k}\right)$
$(k, k-1)$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}(m)$
$(1+\epsilon, 4)$	$\mathcal{O}\left(\epsilon^{-1} n^{4 / 3}\right)$	$\mathcal{O}\left(m n^{2 / 3}\right)$
$(1,6)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}(m n)$
$(1,2)$	$\mathcal{O}\left(n^{3 / 2}\right)$	$\mathcal{O}(m \sqrt{n})$

The spanners zoo

(α, β)	Number of edges	Construction time
$(2 k-1,0)$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}(m)$
$(k-1,2 k-\mathcal{O}(1))$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}\left(m n^{1-1 / k}\right)$
$(k, k-1)$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}(m)$
$(1+\epsilon, 4)$	$\mathcal{O}\left(\epsilon^{-1} n^{4 / 3}\right)$	$\mathcal{O}\left(m n^{2 / 3}\right)$
$(1,6)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}(m n)$
$(1,2)$	$\mathcal{O}\left(n^{3 / 2}\right)$	$\mathcal{O}(m \sqrt{n})$

The spanners zoo

(α, β)	Number of edges	Construction time
$(2 k-1,0)$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}(m)$
$(k-1,2 k-\mathcal{O}(1))$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}\left(m n^{1-1 / k}\right)$
$(k, k-1)$	$\mathcal{O}\left(n^{1+1 / k}\right)$	$\mathcal{O}(m)$
$(1+\epsilon, 4)$	$\mathcal{O}\left(\epsilon^{-1} n^{4 / 3}\right)$	$\mathcal{O}\left(m n^{2 / 3}\right)$
$(1,6)$	$\mathcal{O}\left(n^{4 / 3}\right)$	$\mathcal{O}(m n)$
$(1,2)$	$\mathcal{O}\left(n^{3 / 2}\right)$	$\mathcal{O}(m \sqrt{n})$

New Constructions of (α, β)-Spanners and Purely Additive Spanners (2005)

S.Baswana

T.Kavitha Indian Institute of Technology Kanpur

K.Mehlhorn

Max-Planck-Institut für Informatik

S.Pettie

University of Michigan

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices
- clustering \mathcal{C} - set of disjoint clusters

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices
- clustering \mathcal{C} - set of disjoint clusters
- $\mathcal{C}(v)$ - cluster of clustering \mathcal{C} that contains v

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices
- clustering \mathcal{C} - set of disjoint clusters
- $\mathcal{C}(v)$ - cluster of clustering \mathcal{C} that contains v
- $\mathcal{C}(D)=\{\mathcal{C}(v) \mid v \in D\}$

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices
- clustering \mathcal{C} - set of disjoint clusters
- $\mathcal{C}(v)$ - cluster of clustering \mathcal{C} that contains v
- $\mathcal{C}(D)=\{\mathcal{C}(v) \mid v \in D\}$
- $\mathcal{E}_{(V, E)}(X, Y)=(X \times Y) \cap E$

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices
- clustering \mathcal{C} - set of disjoint clusters
- $\mathcal{C}(v)$ - cluster of clustering \mathcal{C} that contains v
- $\mathcal{C}(D)=\{\mathcal{C}(v) \mid v \in D\}$
- $\mathcal{E}_{(V, E)}(X, Y)=(X \times Y) \cap E$
- $\mathcal{E}_{(V, E)}(x, Y)=(\{x\} \times Y) \cap E$

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices
- clustering \mathcal{C} - set of disjoint clusters
- $\mathcal{C}(v)$ - cluster of clustering \mathcal{C} that contains v
- $\mathcal{C}(D)=\{\mathcal{C}(v) \mid v \in D\}$
- $\mathcal{E}_{(V, E)}(X, Y)=(X \times Y) \cap E$
- $\mathcal{E}_{(V, E)}(x, Y)=(\{x\} \times Y) \cap E$
- $\operatorname{value}_{H}(D)=\left|\left\{\left\{C, C^{\prime}\right\} \subseteq \mathcal{C}(D) \mid \delta_{D}\left(C, C^{\prime}\right) \leq \delta_{H}\left(C, C^{\prime}\right)\right\}\right|$

Some additional notation

- $\Gamma_{G}(v)$ - neighbourhood of the vertex v in the graph G
- $G[S]$ - subgraph of G induced by the vertex set S
- $P_{G}(u, v)=\langle u, \ldots, v\rangle$ - shortest path between u and v in G
- \mathcal{P}_{G} - set of all $\binom{n}{2}$ shortest paths in G
- cluster C - set of vertices
- clustering \mathcal{C} - set of disjoint clusters
- $\mathcal{C}(v)$ - cluster of clustering \mathcal{C} that contains v
- $\mathcal{C}(D)=\{\mathcal{C}(v) \mid v \in D\}$
- $\mathcal{E}_{(V, E)}(X, Y)=(X \times Y) \cap E$
- $\mathcal{E}_{(V, E)}(x, Y)=(\{x\} \times Y) \cap E$
- value $_{H}(D)=\left|\left\{\left\{C, C^{\prime}\right\} \subseteq \mathcal{C}(D) \mid \delta_{D}\left(C, C^{\prime}\right) \leq \delta_{H}\left(C, C^{\prime}\right)\right\}\right|$
- $\operatorname{cost}_{H}(D)=|D \backslash H|$

Algorithm 1: (1, 6)-spanner construction

 input : Graph $G=(V, E)$output: $(1,6)$-spanner H of G begin
$S \leftarrow V \quad / /$ phase 1 - clustering
for $i \leftarrow 1$ to $n^{2 / 3}$ do
$v_{i} \leftarrow \arg \max _{x \in S}\left|\Gamma_{G[S]}(x)\right|$
$C_{i} \leftarrow\left\{v_{i}\right\} \cup \Gamma_{G[S]}\left(v_{i}\right)$
$S \leftarrow S \backslash C_{i}$
$E^{\prime} \leftarrow\left\{\left(v_{i}, x_{v_{i}}\right) \mid 1 \leq i \leq n^{2 / 3}, x_{v_{i}} \in C_{i}\right\} \cup\left\{(u, w) \mid u \in S, w \in \Gamma_{G}(u)\right\}$
$H \leftarrow\left(V, E^{\prime}\right) \quad / /$ phase 2 - path buying
foreach path $P \in \mathcal{P}_{G}$ do
if $2 \cdot \operatorname{value}_{H}(P) \geq \operatorname{cost}_{H}(P)$ then $H \leftarrow H \cup P$
return H
end

Let's build a (1, 6)-spanner

Clustering

Clustering

Clustering

Graph resulting from clustering

Some value-cost trade-off

Some value-cost trade-off

Some value-cost trade-off

Iterate. . .

Resulting spanner

Why is the result always a $(1,6)$-spanner?

Definition (Contented)

We call a subgraph H of G that contains the resulting graph of the clustering phase contented if for any two clustered vertices u_{0}, u_{q} there exists a shortest path $P_{G}\left(u_{0}, u_{q}\right)$ and a cluster $C \in \mathcal{C}(P)$ such that for $i \in\{0, q\}$:

$$
\delta_{H}\left(\mathcal{C}\left(u_{i}\right), C\right) \leq \delta_{P}\left(\mathcal{C}\left(u_{i}\right), C\right)
$$

Lemma
H is contented $\Rightarrow H$ is $(1,6)$-spanner of G
Proof.

- Enough to consider only clustered vertices (Why?)

Why is the result always a $(1,6)$-spanner?

Definition (Contented)

We call a subgraph H of G that contains the resulting graph of the clustering phase contented if for any two clustered vertices u_{0}, u_{q} there exists a shortest path $P_{G}\left(u_{0}, u_{q}\right)$ and a cluster $C \in \mathcal{C}(P)$ such that for $i \in\{0, q\}$:

$$
\delta_{H}\left(\mathcal{C}\left(u_{i}\right), C\right) \leq \delta_{P}\left(\mathcal{C}\left(u_{i}\right), C\right)
$$

Lemma
H is contented $\Rightarrow H$ is $(1,6)$-spanner of G
Proof.

- Enough to consider only clustered vertices (Why?)
- Hint: what happens to unclustered vertices at the end of the clustering phase?

Proof(continued).

Lemma (without proof)

For $P \in \mathcal{P}_{G}$ it holds: either $|\mathcal{C}(P)|=1$ or \exists subpath $P^{\prime} \subseteq P$ s.t. $\mathcal{C}(P)=\mathcal{C}\left(P^{\prime}\right)$ and $\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$

Lemma
The given algorithm computes a contented subgraph of G.

Proof.

- Consider a shortest path $P=P_{G}\left(u_{0}, u_{q}\right)$

Lemma (without proof)

For $P \in \mathcal{P}_{G}$ it holds: either $|\mathcal{C}(P)|=1$ or \exists subpath $P^{\prime} \subseteq P$ s.t. $\mathcal{C}(P)=\mathcal{C}\left(P^{\prime}\right)$ and $\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$

Lemma
The given algorithm computes a contented subgraph of G.

Proof.

- Consider a shortest path $P=P_{G}\left(u_{0}, u_{q}\right)$
- Interesting case: u_{0} and u_{q} are clustered in different clusters in H

Lemma (without proof)

For $P \in \mathcal{P}_{G}$ it holds: either $|\mathcal{C}(P)|=1$ or \exists subpath $P^{\prime} \subseteq P$ s.t.
$\mathcal{C}(P)=\mathcal{C}\left(P^{\prime}\right)$ and $\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
Lemma
The given algorithm computes a contented subgraph of G.

Proof.

- Consider a shortest path $P=P_{G}\left(u_{0}, u_{q}\right)$
- Interesting case: u_{0} and u_{q} are clustered in different clusters in H
- Previous lemma provides a subpath P^{\prime} of P.

Lemma (without proof)

For $P \in \mathcal{P}_{G}$ it holds: either $|\mathcal{C}(P)|=1$ or \exists subpath $P^{\prime} \subseteq P$ s.t.
$\mathcal{C}(P)=\mathcal{C}\left(P^{\prime}\right)$ and $\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
Lemma
The given algorithm computes a contented subgraph of G.

Proof.

- Consider a shortest path $P=P_{G}\left(u_{0}, u_{q}\right)$
- Interesting case: u_{0} and u_{q} are clustered in different clusters in H
- Previous lemma provides a subpath P^{\prime} of P.
- Again the interesting case is when $P^{\prime} \notin H$

Lemma (without proof)

For $P \in \mathcal{P}_{G}$ it holds: either $|\mathcal{C}(P)|=1$ or \exists subpath $P^{\prime} \subseteq P$ s.t.
$\mathcal{C}(P)=\mathcal{C}\left(P^{\prime}\right)$ and $\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
Lemma
The given algorithm computes a contented subgraph of G.

Proof.

- Consider a shortest path $P=P_{G}\left(u_{0}, u_{q}\right)$
- Interesting case: u_{0} and u_{q} are clustered in different clusters in H
- Previous lemma provides a subpath P^{\prime} of P.
- Again the interesting case is when $P^{\prime} \notin H$
- Have

$$
2 \cdot \operatorname{value}_{H}\left(P^{\prime}\right)<\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2 \cdot\left|\mathcal{C}\left(P^{\prime}\right)\right|-3
$$

Proof(continued).

- Have $2 \cdot \operatorname{value}_{H}\left(P^{\prime}\right)<\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2 \cdot\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$

Proof(continued).

- Have $2 \cdot$ value $_{H}\left(P^{\prime}\right)<\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2 \cdot\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
- Consider the set $A=\left\{\left\{C, C^{\prime}\right\} \mid\right.$

$$
\left.C \in\left\{\mathcal{C}\left(u_{0}\right), \mathcal{C}\left(u_{q}\right)\right\}, C^{\prime} \in \mathcal{C}\left(P^{\prime}\right) \backslash\{C\}, \delta_{P^{\prime}}\left(C, C^{\prime}\right)<\delta_{H}\left(C, C^{\prime}\right)\right\}
$$

Proof(continued).

- Have $2 \cdot \operatorname{value}_{H}\left(P^{\prime}\right)<\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2 \cdot\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
- Consider the set $A=\left\{\left\{C, C^{\prime}\right\} \mid\right.$

$$
\left.C \in\left\{\mathcal{C}\left(u_{0}\right), \mathcal{C}\left(u_{q}\right)\right\}, C^{\prime} \in \mathcal{C}\left(P^{\prime}\right) \backslash\{C\}, \delta_{P^{\prime}}\left(C, C^{\prime}\right)<\delta_{H}\left(C, C^{\prime}\right)\right\}
$$

- A has at most $2 \cdot|\mathcal{C}(P)|-3$ elements

Proof(continued).

- Have $2 \cdot \operatorname{value}_{H}\left(P^{\prime}\right)<\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2 \cdot\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
- Consider the set $A=\left\{\left\{C, C^{\prime}\right\} \mid\right.$

$$
\left.C \in\left\{\mathcal{C}\left(u_{0}\right), \mathcal{C}\left(u_{q}\right)\right\}, C^{\prime} \in \mathcal{C}\left(P^{\prime}\right) \backslash\{C\}, \delta_{P^{\prime}}\left(C, C^{\prime}\right)<\delta_{H}\left(C, C^{\prime}\right)\right\}
$$

- A has at most $2 \cdot|\mathcal{C}(P)|-3$ elements
- On the other hand: $|A| \leq \operatorname{value}_{H}\left(P^{\prime}\right) \leq|\mathcal{C}(P)|-2$

Proof(continued).

- Have $2 \cdot$ value $_{H}\left(P^{\prime}\right)<\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2 \cdot\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
- Consider the set $A=\left\{\left\{C, C^{\prime}\right\} \mid\right.$

$$
\left.C \in\left\{\mathcal{C}\left(u_{0}\right), \mathcal{C}\left(u_{q}\right)\right\}, C^{\prime} \in \mathcal{C}\left(P^{\prime}\right) \backslash\{C\}, \delta_{P^{\prime}}\left(C, C^{\prime}\right)<\delta_{H}\left(C, C^{\prime}\right)\right\}
$$

- A has at most $2 \cdot|\mathcal{C}(P)|-3$ elements
- On the other hand: $|A| \leq \operatorname{value}_{H}\left(P^{\prime}\right) \leq|\mathcal{C}(P)|-2$
- There must exist al least $\left|\mathcal{C}\left(P^{\prime}\right)\right|-1$ pairs C, C^{\prime} s.t. $\delta_{P^{\prime}}\left(C, C^{\prime}\right) \geq \delta_{H}\left(C, C^{\prime}\right)$

Proof(continued).

- Have $2 \cdot \operatorname{value}_{H}\left(P^{\prime}\right)<\operatorname{cost}_{H}\left(P^{\prime}\right) \leq 2 \cdot\left|\mathcal{C}\left(P^{\prime}\right)\right|-3$
- Consider the set $A=\left\{\left\{C, C^{\prime}\right\} \mid\right.$

$$
\left.C \in\left\{\mathcal{C}\left(u_{0}\right), \mathcal{C}\left(u_{q}\right)\right\}, C^{\prime} \in \mathcal{C}\left(P^{\prime}\right) \backslash\{C\}, \delta_{P^{\prime}}\left(C, C^{\prime}\right)<\delta_{H}\left(C, C^{\prime}\right)\right\}
$$

- A has at most $2 \cdot|\mathcal{C}(P)|-3$ elements
- On the other hand: $|A| \leq \operatorname{value}_{H}\left(P^{\prime}\right) \leq|\mathcal{C}(P)|-2$
- There must exist al least $\left|\mathcal{C}\left(P^{\prime}\right)\right|-1$ pairs C, C^{\prime} s.t. $\delta_{P^{\prime}}\left(C, C^{\prime}\right) \geq \delta_{H}\left(C, C^{\prime}\right)$
- By the pigeonhole principle there must exist a $C^{\prime \prime} \in \mathcal{C}\left(P^{\prime}\right)=\mathcal{C}(P)$ s.t.

$$
\begin{aligned}
& \delta_{P}\left(C\left(u_{0}\right), C^{\prime \prime}\right)=\delta_{P^{\prime}}\left(C\left(u_{o}\right), C^{\prime \prime}\right) \geq \delta_{H}\left(C\left(u_{0}\right), C^{\prime \prime}\right) \\
& \delta_{P}\left(C\left(u_{q}\right), C^{\prime \prime}\right)=\delta_{P^{\prime}}\left(C\left(u_{q}\right), C^{\prime \prime}\right) \geq \delta_{H}\left(C\left(u_{q}\right), C^{\prime \prime}\right)
\end{aligned}
$$

A word on size and time bounds

Spanner size

- $\mathcal{O}\left(n^{4 / 3}\right)$
- first purely additive spanner of size $O\left(n^{3 / 2}\right)$

A word on size and time bounds

Spanner size

- $\mathcal{O}\left(n^{4 / 3}\right)$
- first purely additive spanner of size $O\left(n^{3 / 2}\right)$

Construction time

- $\mathcal{O}(n m)$
- Clustering linear in n when using priority queue for the "arg max"
- Path buying needs to compute all shortest paths and to know the distances in H
- Still some tweaks are needed to get the bound (e.g. using an upper bound function instead the value function)

Take-home picture

$$
i
$$

Algorithm 2: Randomized ($2 k-1,0$)-spanner construction

 input : Graph $G=(V, E)$ and integer koutput: $(2 k-1,0)$-spanner H of G begin
$S \leftarrow \emptyset$
$\mathcal{C}_{0} \leftarrow\{\{v\} \mid v \in V\}$
for $i \leftarrow 1$ to k do
if $i=k$ then $\mathcal{C}_{i} \leftarrow \emptyset$
else $\mathcal{C}_{i} \leftarrow\left\{C \in \mathcal{C}_{i-1} \mid\right.$ randomBool $\left.\left(n^{-1 / k}\right)\right\}$
concurrently foreach $v \in V \backslash \mathcal{C}_{i}$ do
if $\exists C \in \mathcal{C}_{i}: \mathcal{E}(v, C) \neq \emptyset$ then
$C \leftarrow C \cup\{v\}$
$S \leftarrow S \cup \operatorname{random}(\mathcal{E}(v, C))$
else
foreach $C \in \mathcal{C}_{i-1}$ do $S \leftarrow S \cup$ random $(\mathcal{E}(v, C))$
return (V, S)
end

Again our favourite graph

- Let $\mathrm{k}=3$
- Sampling probability $n^{-1 / k}=12^{-1 / 3} \approx 43,6 \%$
- I used my favourite 100 -sided dice for this $)^{-}$

Again our favourite graph

- Let $\mathrm{k}=3$
- Sampling probability $n^{-1 / k}=12^{-1 / 3} \approx 43,6 \%$
- I used my favourite 100 -sided dice for this -
- bash>for i in 1..12; do echo \$((\$RANDOM\%100+1)); done

Example(continued)

To keep it short write $x y z$ instead of $\{x, y, z\}$

First dice roll $47,24,2,26,76,3,88,33,40,16,4,21$		
i	\mathcal{C}_{i}	new in S
0	$\{a, b, c, d, e, f, g, h, i, j, k, l\}$	\emptyset

Example(continued)

To keep it short write $x y z$ instead of $\{x, y, z\}$

First dice roll $47,24,2,26,76,3,88,33,40,16,4,21$		
i	\mathcal{C}_{i}	new in S
0	$\{a, b, c, d, e, f, g, h, i, j, k, l\}$	\emptyset
1	$\{b a, c e, d, f, h, i g, j, k, l\}$	$a b, c e, g i$

Example(continued)

To keep it short write $x y z$ instead of $\{x, y, z\}$
Second dice roll 96, 10, 83, 99, 27, 35, 69, 59, 85

i	\mathcal{C}_{i}	new in S
0	$\{a, b, c, d, e, f, g, h, i, j, k, l\}$	\emptyset
1	$\{b a, c e, d, f, h, i g, j, k, l\}$	$a b, c e, g i$
2	$\{c e b d f, h j, i g k\}$	$b c, d c, f c, j h, k i, l j, l k$

Example(continued)

To keep it short write $x y z$ instead of $\{x, y, z\}$

i	\mathcal{C}_{i}	new in S
0	$\{a, b, c, d, e, f, g, h, i, j, k, l\}$	\emptyset
1	$\{b a, c e, d, f, h, i g, j, k, l\}$	$a b, c e, g i$
2	$\{c e b d f, h j, i g k\}$	$b c, d c, f c, j h, k i, l j, l k$
3	\emptyset	$e g, f h, g j$

Example(continued)

The result

Lemma

The given algorithm computes $(2 k-1,0)$-spanner H of G. Proof.

- Show that every single edge is stretched by at most $2 k-1$

Lemma

The given algorithm computes $(2 k-1,0)$-spanner H of G.

Proof.

- Show that every single edge is stretched by at most $2 k-1$
- Let $\{u, v\}$ be an arbitrary edge

Lemma

The given algorithm computes $(2 k-1,0)$-spanner H of G.
Proof.

- Show that every single edge is stretched by at most $2 k-1$
- Let $\{u, v\}$ be an arbitrary edge
- Let $/$ be minimal, s.t. either u or v is unclustered in \mathcal{C}_{l}

Lemma

The given algorithm computes $(2 k-1,0)$-spanner H of G.
Proof.

- Show that every single edge is stretched by at most $2 k-1$
- Let $\{u, v\}$ be an arbitrary edge
- Let $/$ be minimal, s.t. either u or v is unclustered in \mathcal{C}_{l}
- Wlog. u is unclustered in \mathcal{C}_{l}

Lemma

The given algorithm computes $(2 k-1,0)$-spanner H of G.
Proof.

- Show that every single edge is stretched by at most $2 k-1$
- Let $\{u, v\}$ be an arbitrary edge
- Let $/$ be minimal, s.t. either u or v is unclustered in \mathcal{C}_{l}
- Wlog. u is unclustered in \mathcal{C}_{l}
- By (R2): $\exists w \in \mathcal{C}_{l-1}(v):\{u, w\} \in H$

Lemma

The given algorithm computes $(2 k-1,0)$-spanner H of G.

Proof.

- Show that every single edge is stretched by at most $2 k-1$
- Let $\{u, v\}$ be an arbitrary edge
- Let $/$ be minimal, s.t. either u or v is unclustered in \mathcal{C}_{l}
- Wlog. u is unclustered in \mathcal{C}_{l}
- By (R2): $\exists w \in \mathcal{C}_{l-1}(v):\{u, w\} \in H$
- By (R1): $\delta_{H}(w, v) \leq 2(I-1)=\operatorname{diam}\left(\mathcal{C}_{I-1}(v)\right)$

Lemma

The given algorithm computes $(2 k-1,0)$-spanner H of G.

Proof.

- Show that every single edge is stretched by at most $2 k-1$
- Let $\{u, v\}$ be an arbitrary edge
- Let $/$ be minimal, s.t. either u or v is unclustered in \mathcal{C}_{l}
- Wlog. u is unclustered in \mathcal{C}_{l}
- By (R2): $\exists w \in \mathcal{C}_{l-1}(v):\{u, w\} \in H$
- By (R1): $\delta_{H}(w, v) \leq 2(I-1)=\operatorname{diam}\left(\mathcal{C}_{I-1}(v)\right)$
- It follows:

$$
\delta_{H}(u, v) \leq 1+2(I-1) \leq 2 k-1=(2 k-1) \delta_{G}(u, v)
$$

Take-home picture

$$
i=0
$$

Take-home picture

$$
i=3
$$

Take-home picture

$$
i=3
$$

Construction

```
Algorithm 3: Randomized ( \(k, k-1\) )-spanner construction input : Graph \(G=(V, E)\) and integer \(k\) output: \((k, k-1)\)-spanner \(H\) of \(G\) begin
            construct the \((2 k-1,0)\)-spanner \((\mathrm{V}, \mathrm{S})\)
        for \(i \leftarrow 1\) to \(k-1\) do // (R3)
            \(L S \leftarrow S \cup\left\{\operatorname{random}\left(\mathcal{E}\left(C, C^{\prime}\right)\right) \mid C \in \mathcal{C}_{i}, C^{\prime} \in \mathcal{C}_{k-1-i}, \mathcal{E}\left(C, C^{\prime}\right) \neq \emptyset\right\}\)
        for \(i \leftarrow\lceil k / 2\rceil\) to \(k-1\) do // (R4)
    \(L S \leftarrow S \cup\left\{\operatorname{random}\left(\mathcal{E}\left(C, C^{\prime}\right)\right) \mid C \in \mathcal{C}_{i}, C^{\prime} \in \mathcal{C}_{i-1}, \mathcal{E}\left(C, C^{\prime}\right) \neq \emptyset\right\}\)

\section*{Again time and space}

\section*{Spanner size}
- both algorithms have the bound \(\mathcal{O}\left(k n^{1+1 / k}\right)\)
- (R3) and (R4) add each \(n^{1+1 / k}\) edges as the expected value to the initial ( \(2 k-1,0\) )-spanner
- Probabilistic algorithm: bound is the expected value

\section*{Again time and space}

\section*{Spanner size}
- both algorithms have the bound \(\mathcal{O}\left(k n^{1+1 / k}\right)\)
- (R3) and (R4) add each \(n^{1+1 / k}\) edges as the expected value to the initial ( \(2 k-1,0\) )-spanner
- Probabilistic algorithm: bound is the expected value

\section*{Construction time}
- both algorithms need \(\mathcal{O}(\mathrm{km})\) deterministic time
- (R3) and (R4) only need linear time

\section*{In networks. . .}
- no "global" information like distances or shortest paths needed
- (R1) - (R4) can be reformulated as local rules for a node in a synchronized distributed network
- after \(\mathcal{O}(k)\) (constant!) rounds the magic happens \(\odot\)
- every node executes the local rules...
- constructing globally a spanner

\section*{Applications}

\section*{Some examples}
- basis of space-efficient routing tables
- simulation of synchronized protocols in unsynchronized networks
- approximate shortest paths in distributed networks
- construction of approximate distance oracles

\section*{Applications}

\section*{Some examples}
- basis of space-efficient routing tables
- simulation of synchronized protocols in unsynchronized networks
- approximate shortest paths in distributed networks
- construction of approximate distance oracles

\section*{Variations}
- simulating directed graphs by using the roundtrip distance instead of the shortest path
- \((\alpha, \beta)\)-Steiner spanner

\section*{An open question}

The girth conjecture (Erdös)
There exist graphs with \(\Omega\left(n^{1+1 / k}\right)\) edges and girth \({ }^{1} 2 k+2\).
Consequences
\({ }^{1}\) length of the shortest cycle

\section*{An open question}

The girth conjecture (Erdös)
There exist graphs with \(\Omega\left(n^{1+1 / k}\right)\) edges and girth \({ }^{1} 2 k+2\).
Consequences
- Assumption: \(G=(V, E)\) fulfils the girth conjecture
- Let \((u, v)=e \in E, H=(V, E \backslash\{e\})\)
- It holds:
\[
\delta_{H}(u, v) \geq
\]

\footnotetext{
\({ }^{1}\) length of the shortest cycle
}

\section*{An open question}

The girth conjecture (Erdös)
There exist graphs with \(\Omega\left(n^{1+1 / k}\right)\) edges and girth \({ }^{1} 2 k+2\).

\section*{Consequences}
- Assumption: \(G=(V, E)\) fulfils the girth conjecture
- Let \((u, v)=e \in E, H=(V, E \backslash\{e\})\)
- It holds:
\[
\delta_{H}(u, v) \geq 2 k+1 \geq(2 k+1) \delta_{G}(u, v)
\]
- Thus, any \((\alpha, \beta)\)-spanner with \(\alpha+\beta \leq 2 k\) must have at least \(\Omega\left(n^{1+1 / k}\right)\) edges.

\footnotetext{
\({ }^{1}\) length of the shortest cycle
}

\section*{An open question}

The girth conjecture (Erdös)
There exist graphs with \(\Omega\left(n^{1+1 / k}\right)\) edges and girth \({ }^{1} 2 k+2\).

\section*{Consequences}
- Assumption: \(G=(V, E)\) fulfils the girth conjecture
- Let \((u, v)=e \in E, H=(V, E \backslash\{e\})\)
- It holds:
\[
\delta_{H}(u, v) \geq 2 k+1 \geq(2 k+1) \delta_{G}(u, v)
\]
- Thus, any \((\alpha, \beta)\)-spanner with \(\alpha+\beta \leq 2 k\) must have at least \(\Omega\left(n^{1+1 / k}\right)\) edges.

Only for \(k=1,2,3,5\) there exist a proof of the girth conjecture.
\({ }^{1}\) length of the shortest cycle

Thank you!```

