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Introduction Definition

Spanners

Definition (Spanner)
Let G = (V, E) be an unweighted graph. A subgraph H = (V,E’) of G is
called (o, 3)-spanner if for all u,v € V it holds:

Op(u,v) < adg(u,v) + B.

H is called additive if @ =1 and purely additive if @ =1 and 8 € O(1).
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Introduction Definition

Spanners

Definition (Spanner)
Let G = (V, E) be an unweighted graph. A subgraph H = (V,E’) of G is
called (o, 3)-spanner if for all u,v € V it holds:

5H(ua V) < aég(u, V) + /8
H is called additive if @« = 1 and purely additive if « =1 and 8 € O(1).

Notation
e n=|V|, m=|E|
e dg(u, v) - length of the shortest path between v and v in G
° 0g(X,Y) = min _ d(x,y)

eX,yeY

diam(D) = J
> Elem{D)) = men 6577
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Introduction Motivation

So what are spanners good for?

e calculate approximate distances. . .
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Introduction Motivation

So what are spanners good for?

e calculate approximate distances. . .
e in a smaller graph constructed from the original graph

e with explicitly given approximation quality bounds

What makes a “good” spanner?

e approximation quality (best case: « = 1,3 = 0)
o size of the spanner (worst case: O(n?))

e construction time (best case: linear)
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Introduction State-of-the-art

The spanners zoo

(o, B) Number of edges | Construction time
(2k — 1,0) O(ntt1/k) O(m)
(k—1,2k —O(1)) O(nt*1/k) O(mnt=1/k)
(k,k —1) O(ntt1/k) O(m)
(1+€4) O(e1n*/3) O(mn?/3)
(1,6) O(n*/3) O(mn)
(L2) o(r7) O(my/n)
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Introduction State-of-the-art

New Constructions of («, 3)-Spanners and Purely Additive
Spanners (2005)

S.Baswana T.Kavitha K.Mehlhorn S.Pettie
Indian Institute of Technology Kanpur Max-Planck-Institut fiir University of
Informatik Michigan
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Purely additive (1,6)-spanner @S]

Some additional notation

e [¢(v) - neighbourhood of the vertex v in the graph G
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Purely additive (1,6)-spanner @S]

Some additional notation

e [¢(v) - neighbourhood of the vertex v in the graph G

e G[S] - subgraph of G induced by the vertex set S

e Pg(u,v) ={(u,...,v) - shortest path between v and v in G
e Pg - set of all (3) shortest paths in G

e cluster C - set of vertices

e clustering C - set of disjoint clusters

e C(v) - cluster of clustering C that contains v

e C(D)={C(v)|veD}
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Some additional notation
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Purely additive (1,6)-spanner @S]

Some additional notation

e [¢(v) - neighbourhood of the vertex v in the graph G

e G[S] - subgraph of G induced by the vertex set S

e Pg(u,v) ={(u,...,v) - shortest path between v and v in G
e Pg - set of all (3) shortest paths in G

e cluster C - set of vertices

e clustering C - set of disjoint clusters

e C(v) - cluster of clustering C that contains v

« ¢(D) = {C(v) | v € D}

e S (X, Y)=(XxY)NE

e EvexY) = ({x} x Y)NE

o valuey(D) = [{{C, C'} CC(D) | 0p(C, C') < 6n(C, C)}|
e costy(D) = |D\ H]
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Purely additive (1,6)-spanner EEHEgIaHlY]

Algorithm 1: (1,6)-spanner construction
input : Graph G = (V,E)
output: (1,6)-spanner H of G
begin
S« V // phase 1 - clustering
for i < 1 to n?/3 do
Vi ¢ argmax T 1s1(x)]

G+ {viy UTgs)(vi)

S+ S\
E — {(vi,x,)|1<i<n?3x,€CU{(uw)|ueS weTlg(u)}
H<+ (V,E) // phase 2 - path buying

foreach path P € Pg do
| if 2 valuey(P) > costy(P) then H <+ HUP

return H

end
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Purely additive (1,6)-spanner @S]

Let's build a (1,6)-spanner

d f h J /
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Purely additive (1,6)-spanner Construction

Clustering
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Purely additive (1,6)-spanner Construction

Clustering
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Construction
Graph resulting from clustering
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C= {{‘97 b},{C, d,e, f7g}={h7.j}7{i’ k, I}}




Construction
Some value-cost trade-off

value(b,c) =1

Dmitriy Traytel: Spanners

C= {{37 b}, {C7 d,e, f,g}, {hvj}’ {i7 k, /}}

cost(b,c) =1

N | it




Construction
Some value-cost trade-off

value(i, g,j) =3
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C= {{37 b}, {C7 d,e, f,g}, {hvj}’ {i7 k, /}}

cost(i, g, ) = 2

N | it




Construction
Some value-cost trade-off

value(c,f) =0
Dmitriy Traytel: Spanners

C= {{37 b}, {C7 d,e, f,g}, {hv.j}’ {i7 k, /}}

cost({c,f) =1

N | it




Purely additive (1,6)-spanner Construction
Iterate. . .
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Purely additive (1,6)-spanner Construction

Resulting spanner
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Why is the result always a (1, 6)-spanner?

Definition (Contented)

We call a subgraph H of G that contains the resulting graph of the
clustering phase contented if for any two clustered vertices g, ug there
exists a shortest path Pg(up, uq) and a cluster C € C(P) such that for

i€{0,q}:
! 5H(C(U,'), C) < (5,D(C(U,'), C)

Lemma
H is contented = H is (1,6)-spanner of G

Proof.

e Enough to consider only clustered vertices (Why?)
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Why is the result always a (1, 6)-spanner?

Definition (Contented)

We call a subgraph H of G that contains the resulting graph of the
clustering phase contented if for any two clustered vertices g, ug there
exists a shortest path Pg(up, uq) and a cluster C € C(P) such that for

i€{0,q}:
! 5H(C(U,'), C) < (5,D(C(U,'), C)

Lemma
H is contented = H is (1,6)-spanner of G

Proof.

e Enough to consider only clustered vertices (Why?)

e Hint: what happens to unclustered vertices at the end of the
clustering phase?
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Proof(continued).

C(uo) C C(uq)
/// \\ /’,—————»~\\\ ,” \\\ /’,—————»~\\\ /,, \\
' v’ ~4 v Sr
1 \ / N 1
! 0 ] \\ ]

1 1 1 \ 1
1 1 1 \ 1
1 1 1 ] 1
1 : 1 I 1
- | ' ! \
\ " == \ 1 P \
N waam @ @  Ug1——lq
\\ g \\ /l \\
N ,/I oL’ . o

(5H(uo,uq) < diam(C(uo)) + 0x(C(up), C) + diam(C) +
dH(C,C(uq)) + diam(C(uq))
< 2+ 65(C(uo), C) + 2+ d1(C,C(uq)) + 2

H contented
<

5P(U0,Uq) +6 L]
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Lemma (without proof)

For P € Pg it holds: either |C(P)| =1 or 3 subpath P' C P s.t.

C(P) =C(P') and costy(P') < 2|C(P")| -3

Lemma
The given algorithm computes a contented subgraph of G.

Proof.

e Consider a shortest path P = Pg(up, ug)
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Lemma (without proof)

For P € Pg it holds: either |C(P)| =1 or 3 subpath P' C P s.t.
C(P) =C(P') and costy(P') < 2|C(P")| -3

Lemma
The given algorithm computes a contented subgraph of G.

Proof.

e Consider a shortest path P = P¢(ug, ug)

e Interesting case: ug and ug are clustered in different clusters in H

Previous lemma provides a subpath P’ of P.

Again the interesting case is when P’ ¢ H

e Have
2. vaIueH(P') < COStH(P/) <2 |C(P/)| -3
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Proof(continued).

e Have 2 - valuey(P’) < costy(P’) <2-|C(P")| -3
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Proof(continued).

e Have 2 - valuey(P’) < costy(P’) <2-|C(P")| -3
o Consider the set A= {{C, C'} |
C € {C(uo),C(uq)}, C" € C(P)\{C},0p/(C, C") < on(C, C)}
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Proof(continued).

e Have 2 - valuey(P’) < costy(P') <2-|C(P")| -3
o Consider the set A= {{C, C'} |

C € {C(w0),C(uq)}, C" € C(P)\{C},0p/(C, C') < 0n(C, C)}
e A has at most 2 - |C(P)| — 3 elements
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

Proof(continued).

e Have 2 - valuey(P’) < costy(P') <2-|C(P")| -3
o Consider the set A= {{C, C'} |
C € {C(u0),C(uq)}, C" € C(P)\{C},0p(C, C') < du(C, C')}
A has at most 2 - |C(P)| — 3 elements
On the other hand: |A| < valuey(P’) < |C(P)|—2

There must exist al least |C(P")| — 1 pairs C, C' s.t.
dp/(C,C") > 6u(C, C")

Dmitriy Traytel: Spanners 13/ 27



EOTEVELL ARG NYRTELNIE  Theoretical considerations

Proof(continued).

e Have 2 - valuey(P’) < costy(P') <2-|C(P")| -3
o Consider the set A= {{C, C'} |
C € {C(u0),C(uq)}, C" € C(P)\{C},0p(C, C') < du(C, C')}
A has at most 2 - |C(P)| — 3 elements
On the other hand: |A| < valuey(P’) < |C(P)|—2
There must exist al least |C(P")| — 1 pairs C, C' s.t.
dp/(C,C") > 6u(C, C")
By the pigeonhole principle there must exist a C” € C(P') = C(P) s.t.

3p(C(uo), C") = 8pr(C(uo), ") > on(C(uo), C”)

5p(Cluq). C") = bp1(C(ug), C") > Sn(C(uq). C)
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EOTEVELL ARG NYRTELNIE  Theoretical considerations

A word on size and time bounds

Spanner size

° O(n4/3)

o first purely additive spanner of size o(n%/?)

Dmitriy Traytel: Spanners 14/ 27



EOTEVELL ARG NYRTELNIE  Theoretical considerations

A word on size and time bounds

Spanner size

° (’)(n4/3)

o first purely additive spanner of size o(n%/?)

Construction time
e O(nm)

Clustering linear in n when using priority queue for the “arg max”

Path buying needs to compute all shortest paths and to know the
distances in H

Still some tweaks are needed to get the bound (e.g. using an upper
bound function instead the value function)
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(NSRS EN I (24 — 1, 0)-spanner

Take-home picture

([ ] ([ ] [ ] [ ] ( J (] (] [ J [ ] [ ] i=0

D@ OG-
po
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(NSRS EN I (24 — 1, 0)-spanner

Algorithm 2: Randomized (2k — 1,0)-spanner construction

input : Graph G = (V, E) and integer k
output: (2k — 1,0)-spanner H of G
begin
S0
Co <+ {{v}|veV}
for i < 1 to k do
if i=kthen C; + 0
else C; + {C € C;_1 | randomBool(n~1/¥)}
concurrently foreach v € V' \ C; do
if 3C €C;: E(v,C) # () then
C+«+ CU{v}
S + SUrandom(&(v, C))
else
| foreach C € Cj_; do S < S Urandom(&(v, C))

return (v,S)
end

// (R1)

// (R2)

Dmitriy Traytel: Spanners
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(NSRS EN I (24 — 1, 0)-spanner

Again our favourite graph

d f h J /

<Y
N\

a C

o Lletk=3
e Sampling probability n=1/k = 12-1/3 ~ 43,6%
e | used my favourite 100-sided dice for this ©®
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(NSRS EN I (24 — 1, 0)-spanner

Again our favourite graph

d f h J /

o
N

a C

Let k =3

Sampling probability n=1/k = 12-1/3 ~ 43, 6%

| used my favourite 100-sided dice for this ©®

bash>for i in 1..12; do echo $(($RANDOMY%100+1)); done
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(NSRS EN I (24 — 1, 0)-spanner

Example(continued)

To keep it short write xyz instead of {x, y, z}
First dice roll 47,24,2,26,76, 3,88, 33,40, 16,4, 21

i C, new in S
0 {37 b’ C7d7e7 f7g7h7 I7J7k7l} @
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Example(continued)

To keep it short write xyz instead of {x, y, z}
First dice roll 47,24,2,26,76, 3,88, 33,40, 16,4, 21

i C, new in S
0 {37 b’ C7d7e7 f7g7h7 I7J7k7l} @
1 {ba,ce,d,f, hig,j, k,I} ab, ce, gi
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(NSRS EN I (24 — 1, 0)-spanner

Example(continued)

To keep it short write xyz instead of {x, y, z}
Second dice roll 96,10, 83,99, 27, 35, 69, 59, 85

{cebdf, hj, igk}

i C; new in S
0 {a,b,c,d,e,f,g,h,l,_/,k,l} @

1 {ba,ce,d,f, hig,j, k,I} ab, ce, gi
2

bc, dc, fc, jh, ki, Ij, Ik

Dmitriy Traytel: Spanners
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(NSRS EN I (24 — 1, 0)-spanner

Example(continued)

To keep it short write xyz instead of {x, y, z}

i Ci new in S

0| {ab,c,d,ef,g hijkl} 0

1 {ba,ce,d,f, hig,j, k,I} ab, ce, gi

2 {cebdf, hj,igk} be, dc, fc, jh, ki, lj, Ik
3 0 eg, fh, gj

Dmitriy Traytel: Spanners
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(NSRS EN I (24 — 1, 0)-spanner

Example(continued)

The result

d —— f =—— h —— | =—— |

|\|>< /N

cC =——— ¢ i — k

Dmitriy Traytel: Spanners 19/ 27



(NSRS EN I (24 — 1, 0)-spanner

Lemma
The given algorithm computes (2k — 1,0)-spanner H of G.

Proof.

e Show that every single edge is stretched by at most 2k — 1
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Lemma
The given algorithm computes (2k — 1,0)-spanner H of G.

Proof.

Show that every single edge is stretched by at most 2k — 1
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Let / be minimal, s.t. either u or v is unclustered in C,

Wilog. u is unclustered in C;
By (R2): 3w € Cj_1(v) : {u,w} e H
By (R1): dp(w,v) <2(/ —1) =diam(C/—1(v))

Dmitriy Traytel: Spanners 20/ 27



(NSRS EN I (24 — 1, 0)-spanner

Lemma
The given algorithm computes (2k — 1,0)-spanner H of G.

Proof.

e Show that every single edge is stretched by at most 2k — 1

Let {u, v} be an arbitrary edge

Let / be minimal, s.t. either u or v is unclustered in C,

Wilog. u is unclustered in C;

By (R2): 3w € Cj_1(v) : {u,w} e H

By (R1): dp(w,v) <2(/ —1) =diam(C/—1(v))
It follows:

Op(u,v) <1+42(1—-1) <2k —1=(2k —1)dg(u,v)
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(VNI VRSN (k, kK — 1)-spanner

Take-home picture
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(VNI VRSN (k, kK — 1)-spanner

Construction

Algorithm 3: Randomized (k, k — 1)-spanner construction
input : Graph G = (V, E) and integer k
output: (k, k — 1)-spanner H of G

begin
construct the (2k — 1,0)-spanner (V,S)
for i< 1to k—1do // (R3)
| S« SU{random(E(C,C")) | CeCi, C" € Cr_1-i,E(C, C") # 0}
for i < [k/2] to k — 1 do // (R4)

| S+« SU{random(&(C,C")) | CeCi, C' €Ci_1,E(C, C") # 0}
end
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Multiplicative spanners Algorithmic properties

Again time and space

Spanner size

e both algorithms have the bound O(kn*+1/k)

e (R3) and (R4) add each n't1/k edges as the expected value to the
initial (2k — 1,0)-spanner

e Probabilistic algorithm: bound is the expected value
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Multiplicative spanners Algorithmic properties

Again time and space

Spanner size

e both algorithms have the bound O(kn*+1/k)

e (R3) and (R4) add each n't1/k edges as the expected value to the
initial (2k — 1,0)-spanner

e Probabilistic algorithm: bound is the expected value

Construction time

e both algorithms need O(km) deterministic time
e (R3) and (R4) only need linear time
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Multiplicative spanners Algorithmic properties

In networks. . .

e no “global” information like distances or shortest paths needed

e (R1) - (R4) can be reformulated as local rules for a node in a
synchronized distributed network
e after O(k) (constant!) rounds the magic happens ®

e every node executes the local rules. ..
e constructing globally a spanner
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Conclusion

Applications

Some examples

basis of space-efficient routing tables
e simulation of synchronized protocols in unsynchronized networks
e approximate shortest paths in distributed networks

e construction of approximate distance oracles
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Conclusion

Applications

Some examples

basis of space-efficient routing tables
e simulation of synchronized protocols in unsynchronized networks
e approximate shortest paths in distributed networks

e construction of approximate distance oracles

Variations

e simulating directed graphs by using the roundtrip distance instead of
the shortest path

e («a, B)-Steiner spanner
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Conclusion

An open question

The girth conjecture (Erdods)
There exist graphs with Q(n'T1/%) edges and girth! 2k + 2.

Consequences

length of the shortest cycle
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e [t holds:
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Conclusion

An open question

The girth conjecture (Erdods)
There exist graphs with Q(n'*1/¥) edges and girth! 2k + 2.

Consequences

e Assumption: G = (V/, E) fulfils the girth conjecture
o Let (u,v)=ecE, H=(V,E\{e})
e [t holds:
OH(u,v) >2k+1> (2k +1)og(u,v)

e Thus, any («a, 8)-spanner with a + 3 < 2k must have at least
Q(n't1/k) edges.

Only for k = 1,2 3,5 there exist a proof of the girth conjecture.
length of the shortest cycle
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Conclusion

Thank you!
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