
Spanners

Quality measures and efficient construction

Dmitriy Traytel

October 5, 2010

Abstract

This document is a written summary for a presentation on “spanners” given at the course
2 of the Ferienakademie in Sarntal 2010. It contains the definition of a (α, β)-spanner together
with three construction algorithms for different approximation qualities.

1

Contents

1 Introduction 3

2 Purely additive (1,6)-spanner 3
2.1 Construction . 3
2.2 Theoretical considerations . 4

3 Multiplicative spanners 5
3.1 (2k − 1, 0)-spanner . 6
3.2 (k, k − 1)-spanner . 6
3.3 Algorithmic properties . 7

4 Conclusion 7

A Notation 8

2

1 Introduction

The running time of an algorithm that is solving a shortest paths or distances problem almost
always depends on the number of edges of the given graph. Thus, if the graph is too dense,
one can not expect an appropriate running time. Spanners are an approach to resolve this
problem. The idea is to change the graph by removing edges such that the shortest paths are
not stretched by more than some given bound.

Definition 1.1 (Spanner). Let G = (V,E) be an unweighted graph. A subgraph H = (V,E′)
of G is called (α, β)-spanner if for all u, v ∈ V it holds:

δH(u, v) ≤ αδG(u, v) + β.

H is called additive if α = 1 and purely additive if α = 1 and β ∈ O(1).

In the following we denote by n the number of vertices, by m the number of edges. Further
notation can be found in the appendix.

When constructing a spanner, there has to be a trade-off between the approximation
quality, the size of the spanner and the construction time. The approximation quality is
explicitly given by the values α and β. The best case for these to values is α = 1, β = 0,
i.e. the spanner conserves all shortest distances of the original graph. The number of edges
is obviously a reasonable measure of the size of the spanner. The linear1 construction time is
the best that can be achieved. Table 1 shows a selection of known spanner constructions.

(α, β) Number of edges Construction time

(2k − 1, 0) O(n1+1/k) O(m)

(k − 1, 2k −O(1)) O(n1+1/k) O(mn1−1/k)

(k, k − 1) O(n1+1/k) O(m)

(1 + ε, 4) O(ε−1n4/3) O(mn2/3)

(1, 6) O(n4/3) O(mn)

(1, 2) O(n3/2) O(m
√
n)

Table 1: The spanners zoo

In the following three of these constructions will be presented.

2 Purely additive (1,6)-spanner

The following (1, 6)-spanner construction was introduced in [BKMP05].

2.1 Construction

The algorithm is divided in two phases. In the clustering phase the vertices of the graph
are divided into n3/2 clusters such that every cluster has a central node (i.e. a node that is
adjacent to all other nodes in the cluster). The result of the clustering phase is the subgraph
of the input graph that consists of the radius one spanning trees of these n3/2 clusters together
with all edges that are incident to unclustered vertices.

The second phase adds more edges to reach the needed approximation quality. Edges are
only added if they are “worth” it. More precisely, an edge of a shortest path is included in
the spanner if the value of the path is greater than a half of its cost2.

1in the number of edges
2for the definition of value and cost see appendix

3

Algorithm 1: (1, 6)-spanner construction

input : Graph G = (V,E)
output: (1, 6)-spanner H of G
begin

S ← V // phase 1 - clustering

for i← 1 to n2/3 do
vi ← arg max

x∈S
|ΓG[S](x)|

Ci ← {vi} ∪ ΓG[S](vi)
S ← S \ Ci

E ′ ← {(vi, xvi) | 1 ≤ i ≤ n2/3, xvi ∈ Ci} ∪ {(u,w) | u ∈ S,w ∈ ΓG(u)}
H ← (V,E ′) // phase 2 - path buying

foreach path P ∈ PG do
if 2 · valueH(P) ≥ costH(P) then H ← H ∪ P

return H
end

2.2 Theoretical considerations

From the algorithm, it is unclear why the result must be a (1, 6)-spanner. The prove is
subdivided in two steps. First we define a certain property that helps us to derive the (1, 6)-
bound. In the second step we prove that this defined property holds for the graph resulting
from the algorithm.

Definition 2.1 (Contented). We call a subgraph H of G that contains the resulting graph of
the clustering phase contented if for any two clustered vertices u0, uq there exists a shortest
path PG(u0, uq) and a cluster C ∈ C(P) such that for i ∈ {0, q}:

δH(C(ui), C) ≤ δP (C(ui), C)

Lemma 2.2. H is contented ⇒ H is (1, 6)-spanner of G

Proof. Assume H is contented. As all edges incident to unclustered vertices at the end of the
clustering phase are added to the spanner, it is enough to consider only clustered vertices.
Let 〈u0, u1, . . . , uq−1, uq〉 be a shortest path between arbitrary two clustered nodes u0 and uq.
Then there must exist a cluster C in the clustering of H that fulfils the inequality from the
definition of contented. Figure 2.2 visualises the possible paths between clusters and allows
us to bound the distance between u0 and uq by the following chain of inequalities.

u0 u1 uq−1 uq

C(u0) C(uq)C

Figure 1: (u0, uq)-paths in the graph, 〈u0, u1, . . . , uq−1, uq〉 a shortest path

4

δH(u0, uq) ≤ diam(C(u0)) + δH(C(u0), C) + diam(C) +

δH(C, C(uq)) + diam(C(uq))
≤ 2 + δH(C(u0), C) + 2 + δH(C, C(uq)) + 2

H contented
≤ δP (u0, uq) + 6

Lemma 2.3 (without proof, see [BKMP05]). For P ∈ PG it holds: either |C(P)| = 1 or ∃
subpath P ′ ⊆ P such that C(P) = C(P ′) and costH(P ′) ≤ 2|C(P ′)| − 3

Lemma 2.4. The given algorithm computes a contented subgraph of G.

Proof. We consider a shortest path P = PG(u0, uq). The non-trivial case is when u0 and uq
are clustered in different clusters of H. Lemma 2.3 provides a subpath P ′ of P . Again the
interesting case is when P ′ 6∈ H. From the fact that P ′ was “refused” in the path buying
phase and lemma 2.3 have:

2 · valueH(P ′) < costH(P ′) ≤ 2 · |C(P ′)| − 3.

Now, we consider the set:

A = {{C,C ′} | C ∈ {C(u0), C(uq)}, C ′ ∈ C(P ′) \ {C}, δP ′(C,C ′) < δH(C,C ′)}

By its definition A has at most 2 · |C(P)| − 3 elements. But the fact that A is obviously a
subset of the set that is computed to gain the value of P ′ gives us a better upper bound for
the cardinality of A. It holds:

|A| ≤ valueH(P ′) ≤ |C(P)| − 2

Thus, there must exist al least |C(P ′)|−1 pairs C,C ′ such that δP ′(C,C ′) ≥ δH(C,C ′). Finally,
by the pigeonhole principle there must exist a C ′′ ∈ C(P ′) = C(P) such that both:

δP (C(u0), C
′′) = δP ′(C(uo), C

′′) ≥ δH(C(u0), C
′′)

and
δP (C(uq), C

′′) = δP ′(C(uq), C
′′) ≥ δH(C(uq), C

′′)

hold.

[BKMP05] proves additionally a O(n4/3) size bound and the O(nm) construction time,
which can be achieved using a priority queue for the clustering phase and some technical
tweaks for the expensive path buying phase.

3 Multiplicative spanners

Multiplicative spanners may be worse in terms of approximation, but they have their advan-
tages in faster construction time and smaller size. We consider first the (2k − 1, 0) linear
time construction by [ADD+93] which serves as basis for the (k, k− 1)-spanner introduced by
[BKMP05].

5

Algorithm 2: Randomized (2k − 1, 0)-spanner construction

input : Graph G = (V,E) and integer k
output: (2k − 1, 0)-spanner H of G
begin

S ← ∅
C0 ← {{v} | v ∈ V }
for i← 1 to k do

if i = k then Ci ← ∅
else Ci ← {C ∈ Ci−1 | randomBool(n−1/k)}
concurrently foreach v ∈ V \ Ci do

if ∃C ∈ Ci : E(v, C) 6= ∅ then // (R1)
C ← C ∪ {v}
S ← S ∪ random(E(v, C))

else // (R2)
foreach C ∈ Ci−1 do S ← S ∪ random(E(v, C))

return (V, S)
end

3.1 (2k − 1, 0)-spanner

This algorithms builds something like a hierarchy of clusterings inside of the for-loop. For
each level i = 1 . . . k there exists a clustering Ci that consists of radius k spanning trees
as clusters((R1)). The “central nodes” are determined by sampling with probability n−1/k.
Vertices that are unclustered on level i−1 get connected to clusters on the level i−1 whenever
it is possible((R2)).

Again the spanner property is not obvious at all. The best way to demonstrate the intuition
behind this algorithm is to resolve its magic by proving its correctness.

Lemma 3.1. The given algorithm computes a (2k − 1, 0)-spanner H of G.

Proof. We show that every single edge is stretched by at most 2k − 1.
Let {u, v} be an arbitrary edge. Let l be minimal, such that either u or v is unclustered in

Cl (note that on the k-th level all vertices are unclustered). Without loss of generality let u be
the vertex that is unclustered in Cl. By (R2) there exists a vertex w ∈ Cl−1(v) : {u,w} ∈ H.
By (R1) it holds δH(w, v) ≤ 2(l − 1) = diam(Cl−1(v)). Putting this together gives us:

δH(u, v) ≤ 1 + 2(l − 1) ≤ 2k − 1 = (2k − 1)δG(u, v).

3.2 (k, k − 1)-spanner

[BKMP05] could show that by adding few new edges to the (2k − 1, 0)-spanner from the
previous subsection, one can obtain a better spanner in terms of approximation quality. There
are two kinds of edges that need to be added. First, edges between clusters from pairs of
clusterings whose levels add up to k− 1 are described by (R3). (R4) describes edges between
clusterings on consecutive levels, but only in the bottom half of the clustering hierarchy. The
rather technical correctness proof of this algorithm can be found in [BKMP05].

6

Algorithm 3: Randomized (k, k − 1)-spanner construction

input : Graph G = (V,E) and integer k
output: (k, k − 1)-spanner H of G
begin

construct the (2k − 1, 0)-spanner (V,S)
for i← 1 to k − 1 do // (R3)

S ← S ∪ {random(E(C,C ′)) | C ∈ Ci, C ′ ∈ Ck−1−i, E(C,C ′) 6= ∅}
for i← dk/2e to k − 1 do // (R4)

S ← S ∪ {random(E(C,C ′)) | C ∈ Ci, C ′ ∈ Ci−1, E(C,C ′) 6= ∅}
end

3.3 Algorithmic properties

Both algorithms, the (2k-1,0)- and the (k,k-1)-spanner construction provide the expected
spanner size bound O(kn1+1/k). The reason is that the edge-inclusion rules (R3) and (R4)

add each n1+1/k edges as expected value to the initial (2k−1, 0)-spanner. Also, both algorithms
need O(km) deterministic construction time. Especially, (R3) and (R4) only need linear time.

An other very handy property of this algorithms is the fact that the edge-inclusion rules
(R1)-(R4) can be reformulated as local rules for a node in a synchronized distributed network,
such that after O(k) (constant!) rounds of execution of these rules a spanner of the network
is build globally.

4 Conclusion

Spanners are necessary if the original graph is too dense to make computations on it. There
exist several known constructions, that can be used according to the needs for good approxi-
mation quality, small spanner size and short construction time.

The most important applications of spanners are the computation of approximate shortest
paths in distributed networks, construction of approximate distance oracles and simulation
of synchronized protocols in unsynchronized networks. Spanners can also be used as basis of
space-efficient routing tables.

A variation of a spanner allows to deal with directed graphs. For this purpose, the roundtrip
distance must be used instead of the shortest path.

The zoo of spanners is not completely explored yet. At least there is no proof for the
lowest possible size bound of a spanner. This corresponds to one of the most famous open
questions in graph theory: the girth conjecture. The conjecture was stated by Erdös in 1963.
It says that there exist graphs with Ω(n1+1/k) edges and girth3 2k+2. If the conjecture holds,
the proof of the lower bound of the spanner size is easy: assume G = (V,E) fulfils the girth
conjecture and let (u, v) = e ∈ E, H = (V,E \{e}). Then δH(u, v) ≥ 2k+1 ≥ (2k+1)δG(u, v)
holds and thus, any (α, β)-spanner with α+ β ≤ 2k must have at least Ω(n1+1/k) edges.

Currently, only for k = 1, 2, 3, 5 there exists a proof of the girth conjecture.

3length of the shortest cycle

7

References

[ADD+93] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares.
On sparse spanners of weighted graphs. Discrete & Computational Geometry,
9:81–100, 1993.

[BKMP] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and
(α, β)-spanners. ACM Transactions on Algorithms. to appear.

[BKMP05] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. New
constructions of (α, β)-spanners and purely additive spanners. In Proc. 16th
Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 672–681,
2005.

A Notation
δG(u, v) length of a shortest path between u and v in G
δG(X,Y) = min

x∈X,y∈Y
δG(x, y)

diamG(D) = max
x,y∈D

δG(x, y)

ΓG(v) neighbourhood of the vertex v in G
G[S] subgraph of G induced by the vertex set S
PG(u, v) = 〈u, . . . , v〉 a shortest path between u and v in G
PG set of

(
n
2

)
shortest paths between all vertex pairs in G

cluster C set of vertices
clustering C set of disjoint clusters
C(v) cluster of clustering C that contains v
C(D) = {C(v) | v ∈ D}
E(V,E)(X,Y) = (X × Y) ∩ E
E(V,E)(x, Y) = ({x} × Y) ∩ E
valueH(D) = |{{C,C ′} ⊆ C(D) | δD(C,C ′) ≤ δH(C,C ′)}|
costH(D) = |D \H|

8

	Introduction
	Purely additive (1,6)-spanner
	Construction
	Theoretical considerations

	Multiplicative spanners
	(2k-1,0)-spanner
	(k,k-1)-spanner
	Algorithmic properties

	Conclusion
	Notation

