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Preliminaries The SSSP – Single Source Shortest Path Problem

The SSSP – Single Source Shortest Path Problem

• many solutions exist

• all are based on Dijkstra

• no Algorithm has achieved linear time so far (1997)

• Idea:
• deviate from Dijkstra’s visiting approach
• construct a theoretical linear time Algorithm
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Preliminaries Terminology

Terminology

• G = (V ,E ): undirected connected graph with positive integer edge
weights

• l : E → N: weight function for G
• l only works on Integers
• sizeof (Integer): length of an Integer in Bit

• 32 for i386
• 64 for most modern 64 bit systems
• probably 128 for special IPv6 routers

• ⇒ 2sizeof (Integer) − 1 maximum value of l
• if (v ,w) /∈ E , then l(v ,w) =∞.

• s ∈ V : source for the SSSP-problem

• d : V → N: d(v) is the shortest distance from s to v

• D : V → N, super distance for d

• D(v): shortest distance from s to v currently known in the ongoing
step

• ⇒ D(v): upper limit for the absolute shortest distance d(v)
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Preliminaries Terminology

Terminology cont.

• S ⊆ V : set of vertices already visited

initalize(G , l , s):

Require: G = (V ,E ) is an undirected graph with positive integer edge
weights defined by l .

Require: s ∈ V .
S := {s}
D(s) := 0
d(s) := 0
for all v ∈ V \ S do

D(v) := l(s, v)
end for
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Preliminaries Terminology

Visiting a vertex

• v ∈ V \ S

• setting D(w) for all (v ,w) ∈ E ,w /∈ S to min{D(w),D(v) + l(v ,w)}
• moving v to S

• v can only be visited if D(v) = d(v)
cf. Dijkstra

visit(v):

Require: D(v) = d(v) ∧ v ∈ V \ S
for all (v ,w) ∈ E ,w /∈ S do

D(w) := min{D(w),D(v) + l(v ,w)}
S := S ∪ {v}

end for
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Preliminaries First conclusions

First conclusions

• SSSP-Algorithm terminates with S = V

• returns: minimum distance d(v) for all v ∈ V .

• in every step: ∀v ∈ S : D(v) = d(v).

Lemma
If v ∈ V \ S minimizes D(v), then D(v) = d(v).

Proof.
u ∈ V \ S : a vertex on a shortest path from s to v which can be visited.
⇒ D(u) = d(u)

⇒ D(v)
super distance

≥ d(v)
on a shortest path

≥ d(u) = D(u)
minimum
≥ D(v).
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Preliminaries First conclusions

First conclusions cont.

Lemma
min D(V \ S) = min d(V \ S) is nondecreasing.

Proof.
cf. Dijkstra’s Algorithm.

By combining all previous lemmata, Dijkstra’s Algorithm can be derived.
However, our aim is not to use Dijkstra’s Algorithm, but the previous
lemmata will prove to be useful, when handled with care.
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Preliminaries Terminology

Terminology: shift operator

x � i = b x
2i c

• x � i : shifting the binary representation of x i digits to the right

• corresponds to the fast and cheap x86 assembly operation shr

Lemma
x ≤ y ⇒ x � i ≤ y � i

Lemma
x � i < y � i ⇒ x < y
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Towards an alternative visiting algorithm Idea

Towards an alternative visiting algorithm

First Idea

• divide V into disjoint subsets V1, . . . ,Vk

• let edges between the subsets have length at least δ

• find a way to visit vertices with d(v) = D(v)

• avoid any kind of sorting
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Towards an alternative visiting algorithm Idea

Towards an alternative visiting algorithm

Lemma
Suppose the vertex set V divides into disjoint subsets V1, . . . ,Vk and that
all edges between the subsets have length at least δ. Further suppose for
some i, v ∈ Vi \ S that D(v) = min D(Vi \ S) ≤ min D(V \ S) + δ . Then
d(v) = D(v).
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9

16

Figure: Example: δ = 8, red highlighted edges describe the two disjoint subsets.
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Towards an alternative visiting algorithm Idea

Proof Part 1: u ∈ Vi \ S

Proof.
To imagine the previous Lemma, suppose u to be the first vertex outside S
on a shortest path from s to v . If u ∈ Vi \ S then D(v) ≥ d(v) ≥ d(u).
The way we visit each vertex and the fact that u is one of the vertices
directly outside S , concludes d(u) = D(u). However, as D(v) is the
minimum in Vi \ S , D(u) ≥ D(v). Putting the inequation together
d(v) = D(v).
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Towards an alternative visiting algorithm Idea

Proof Part 2: u /∈ Vi \ S

Proof.
If u /∈ Vi , every edge between the component of u and Vi has at least a weight of
δ. Again, D(v) ≥ d(v). A component border has to be passed to (possibly
indirectly) connect u and v , thus d(v) ≥ d(u) + δ = D(u) + δ. However, the
minimal vertex concerning D in the whole graph might still be less than u, in
combination with the assumption,

D(u) + δ ≥ min D(V \ S) + δ
assumption
≥ min(Vi \ S)

assumption
= D(v). Thus

d(v) = D(v).
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Figure: Example: δ = 8, S = {s, a, b}, red highlighted edges describe the two components.
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Towards an alternative visiting algorithm Component Hierarchy

Breaking up the Graph

The previous Lemma gives us a basic idea of how a Graph can be broken
up:

Component Hierarchy

• Dividing the graph into components, forming a component hierarchy.

• Gi = (Vi ,Ei ): subgraph of G with ∀e ∈ Ei : l(e) < 2i .

• We consider the connected components of Gi

• [v ]i : component on level i containing v

• Component Hierarchy can be imagined like a tree: all [w ]i−1 with
[w ]i = [v ]i are called children of [v ]i .
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Towards an alternative visiting algorithm Component Hierarchy

Component Hierarchy

• G0 only consists of singleton vertices.

• Gsizeof (Integer) represents the whole graph.

• If [v ]i 6= [w ]i ⇒ dist(v ,w) ≥ 2i .
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Towards an alternative visiting algorithm Component Hierarchy
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Figure: Example: δ = 8, S = {s, a, b}, red highlighted edges describe the two
components.

The red highlighted edges describe the components of G3: All highlighted
edges carry a weight less than 8.
[k]3 = [i ]3 = [v ]3 = [j ]3 6= [u]3 = [s]3 = [a]3 = [b]3 = [d ]3
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Towards an alternative visiting algorithm Component Hierarchy

• [v ]−i : abbreviation for [v ]i \ S .

• [v ]−i : all vertices on level i in the component [v ]i which have not
been visited.

• [v ]−i is not necessarily connected and depends on S!

Corelius Diekmann: SSSP 17/ 38



Towards an alternative visiting algorithm Component Hierarchy
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Figure: Example: δ = 8, S = {s, a, b}, red highlighted edges describe the two
components.

• The red highlighted vertices are in S , thus [u]−3 = {u, d} which is not
connected.

• [v ]−3 = {k , i , v , j}
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Towards an alternative visiting algorithm Component Hierarchy

Definition
[v ]i is a min-child of [v ]i+1 if min(D([v ]−i ))� i = min(D([v ]−i+1))� i

Definition
[v ]i is minimal if [v ]−i 6= ∅ and ∀j ≥ i : [v ]j is a min-child of [v ]j+1

Lemma
If v /∈ S , [v ]i is minimal, and i < j ≤ sizeof (Integer),
min D([v ]−i )� j − 1 = min D([v ]−j )� j − 1.

Lemma
Suppose v /∈ S and there is a shortest path to v where the first vertex u
outside S is in [v ]i . Then d(v) ≥ min D([v ]−i ).
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Towards an alternative visiting algorithm Component Hierarchy

Example

• [s]3 = {s, a,w , v}
• [s]−3 = {a,w , v}
• [s]3 is minimal. [s]3 = [v ]3 ⇒ [v ]3 minimal.

• [v ]2 = {s, v}
• [v ]−2 = {v}
• min D([v ]−2 ) = min D({v}) = D(v)

• min D([v ]−3 ) = min D({v , a,w}) = D(v)

• min D([v ]−2 )� 2 = D(v)� 2 = 0 and
min D([v ]−3 )� 2 = D(v)� 2 = 0:
[v ]2 is a min-child of [v ]3, thus [v ]2 is minimal.
[v ]1 = [v ]0, hence [v ]0 is minimal.

s

w

va

6

4

2

s

Figure: min-child
example: S = {s}
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Towards an alternative visiting algorithm Visiting a vertex

[v ]0 minimal ⇒ D(v) = d(v)

Lemma
If v /∈ S and [v ]i is minimal, min D([v ]−i ) = min d([v ]−i ).

Proof.
∀w ∈ V : D(w) ≥ d(w) ⇒ min D([v ]−i ) ≥ min d([v ]−i ).
Let x ∈ [v ]−i , when we imagine the graph, we see that
d(x) ≥ min D([v ]−i )1.
Resulting equation: d(x) ≥ min D([v ]−i ) ≥ min d([v ]−i ) for all x , especially
for the x which minimizes d([v ]−i ), which delivers the result
min D([v ]−i ) = min d([v ]−i ).

1d(x) ≥ min D([v ]−i ) will be shown on the next slide
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Towards an alternative visiting algorithm Visiting a vertex

d(x) ≥ min D([v ]−i )

Lemma
If v /∈ S and [v ]i is minimal, min D([v ]−i ) = min d([v ]−i ).

Proof.
Let u be the first vertex outside S on a shortest path to x . On the one
hand assume u ∈ [v ]i . D(u) is a lower bound for the length of the path
from s to x , thus d(x) ≥ D(u) and D(u) ≥ min D([v ]−i ) since u ∈ [v ]−i .
On the other hand assume u /∈ [v ]i . [v ]i is minimal, thus
min(D([v ]−i ))� i = min(D([v ]−i+j))� i , for all j ∈ N0. When starting

with j = 0 and incrementing j until u ∈ [v ]−i+j , the path from s to x over u

must at least contain one edge of weight ≥ 2i . Note that 2i � i = 1.
However, min(D([v ]−i+j))� i remains constant when incrementing j and

u /∈ [v ]i results in d(x) ≥ min D([v ]−i ).
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Towards an alternative visiting algorithm Visiting a vertex

Lemma
If v /∈ S and v minimizes D(v), [v ]0 is minimal.

Proof.
∀i : min D([v ]−i )� i = min D([v ]−i+1)� i = D(v)� i , so [v ]0 is
minimal.
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The first algorithm SSSP-Algorithm

SSSP(G , l , s):

initialize(G , l , s)
w = sizeof (Integer)
for i ∈ [0,w ] do

declare globally xi {just define this variable, it will be used by the
Visit Algorithm}

end for
Visit([s]w )
return D

Corelius Diekmann: SSSP 24/ 38



The first algorithm SSSP-Algorithm

SSSP(G , l , s):

• Provides a solution to the SSSP-Problem.

• Not in linear time.

• Recall that [s]sizeof (Integer) represents the whole graph ⇒
[s]sizeof (Integer) is minimal by definition.
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The first algorithm Visit-Algorithm

Visit([v ]i ):

Require: [v ]i is minimal
if i = 0 then

visit v {This visit refers to the basic visitng Algorithm}
return

end if
if [v ]i has not been visited previously then

xi ([v ]i ) := min D([v ]−i )� i − 1
end if
repeat

while ∃ child [w ]i−1 of [v ]i such that min D([w ]−i−1)� i − 1 = xi ([v ]i ) do

assert(min D([v ]−i )� i = min d([v ]−i )� i)
assert([w ]i−1 is minimal)
Visit([w ]i−1)

end while
xi ([v ]i ) := xi ([v ]i ) + 1

until [v ]−i = ∅ ∨ xi ([v ]i )� 1 is increased

Corelius Diekmann: SSSP 26/ 38



The first algorithm Visit-Algorithm

• Termination condition i = 0 must be reasonable!

• The two assertions in the inner while loop describe the intuition of
that loop.
• min D([v ]−i )� i = min d([v ]−i )� i is preserved constant throughout

the whole while loop.
c.f. Lemma 13 in [Tho99]

• while loop only visits all w ∈ [v ]−i with d(w)� i = min D([v ]−i )� i .

• Termination conditions of the repeat until loop only holds if [v ]i is no
longer minimal.
• If [v ]−i = ∅, [v ]i is not minimal by definition.
• xi ([v ]i )� 1 is equal to min D([v ]−i )� i . The following lemma

explains the repeat until loop condition.

Lemma
If [v ]i is minimal, it remains minimal until min D([v ]−i )� i is increased, in
which case min d([v ]−i )� i is also increased.
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The first algorithm Visit-Algorithm

Proof Part 1: |[v ]−i | was 1

Lemma
If [v ]i is minimal, it remains minimal until min D([v ]−i )� i is increased, in
which case min d([v ]−i )� i is also increased.

Proof.
Assuming [v ]i is minimal and visiting w ∈ [v ]−i stops [v ]i from being
minimal. If [v ]−i was {w = v}, after visiting w ,
min D([v ]−i ) = min d([v ]−i ) =∞ and after the visit [v ]−i = ∅.
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The first algorithm Visit-Algorithm

Proof Part 2: |[v ]−i | was greater 1

Before the visit to w , min d([v ]−i ) was equal to min D([v ]−i ) according to
the Lemma on slide 33. Now we pick the smallest possible j ≥ i ∈ N such
that [v ]j is minimal after the visit of w . If [v ]i 6= ∅, this j must exist, in
the worst case it could be sizeof (Integer). Before the visit
min D([v ]−i )� j ≤ min D([v ]−j )� j . The way we have chosen j ,

min D([v ]−j )� j︸ ︷︷ ︸
before

≤ min D([v ]−j )� j︸ ︷︷ ︸
after

. However as j was chosen at the

minimality border min D([v ]−j )� j︸ ︷︷ ︸
after

< min d([v ]−j−1)� j︸ ︷︷ ︸
after

. After the visit, it

also holds that min D([v ]−i )� j ≥ min d([v ]−i )� j ≥ min d([v ]−j−1)� j .
Putting it all together, we conclude
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The first algorithm Visit-Algorithm

Proof cont.

min D([v ]−i )� j︸ ︷︷ ︸
after

≥ min d([v ]−i )� j︸ ︷︷ ︸
after

≥

min d([v ]−j−1)� j︸ ︷︷ ︸
after

> min D([v ]−j )� j︸ ︷︷ ︸
after

≥ min D([v ]−j )� j︸ ︷︷ ︸
before

=

min D([v ]−i )� j︸ ︷︷ ︸
before

= min d([v ]−i )� j︸ ︷︷ ︸
before

�
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The first algorithm Visit-Algorithm

Require: [v ]i is minimal
if i = 0 then

visit v {This visit refers to the basic visitng Algorithm}
return

end if
if [v ]i has not been visited previously then

xi ([v ]i ) := min D([v ]−i )� i − 1
end if
repeat

while ∃ child [w ]i−1 of [v ]i such that min D([w ]−i−1)� i − 1 = xi ([v ]i ) do

assert(min D([v ]−i )� i = min d([v ]−i )� i)
assert([w ]i−1 is minimal)
Visit([w ]i−1)

end while
xi ([v ]i ) := xi ([v ]i ) + 1

until [v ]−i = ∅ ∨ xi ([v ]i )� 1 is increased

Observing the line in which xi ([v ]i ) is increased by exactly one, the next
Lemma will explain this line and the benefit of the shift operator.
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The first algorithm Visit-Algorithm

Lemma
Suppose min D([v ]−i )� i = min d([v ]−i )� i and that visiting a vertex
w ∈ V \ S changes min D([v ]−i )� i . Then w ∈ [v ]i and if [v ]−i is not
emptied, the change in min D([v ]−i )� i is an increase by one.

Proof.
When visiting w , min D([v ]−i )� i is changed and due to the fact that
min D([v ]−i )� i was equal to min d([v ]−i )� i and d is nondecreasing
and a lower bound for D

min D([v ]−i )� i︸ ︷︷ ︸
after

> min D([v ]−i )� i︸ ︷︷ ︸
before

However, when recalling the way a vertex is visited, we conclude that the
D values can never increase, thus [v ]−i must have been decreased and
hence w must have been in [v ]i .
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The first algorithm Visit-Algorithm

Proof cont.

Considering [v ]−i after the visit, according to the assumption, [v ]−i is not
empty, and since [v ]i is connected, there must be an edge (u, x) in [v ]i
with u /∈ [v ]−i and x ∈ [v ]−i . This edge must exist, we could for example
choose u = w and x one arbitrary vertex of [v ]−i . Assuming
u = w ⇒ [u]0 = [w ]0 and with Lemma on slide 35 [u]0 minimal,
d(u)� i = D(u)� i which equals min D([v ]−i )� i before the visit. If
u 6= w , u /∈ [v ]−i before the visit to w , we are free to choose u from S .
Since S contains the visited vertices, d(u)� i ≤ min D([v ]−i )� i just
before the visit 2.

2c.f. [Tho99] Lemma 10 for an in depth proof of this well conceivable fact. This
condition even holds, if we cannot pick u from S
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The first algorithm Visit-Algorithm

Proof cont.

In any case d(u)� i ≤ min D([v ]−i )� i before the visit. Since the edge
(u, x) is in [v ]i , l(u, x) < 2i and
D(x)� i ≤ (d(u) + l(u, x))� i ≤ (min D([v ]−i ) + l(u, x))� i . Thanks
to the shifting, l(u, x) can at least produce an overflow of one, thus
(min D([v ]−i ) + l(u, x)))� i ≤ (min D([v ]−i )� i) + 1. Putting it together

min D([v ]−i )� i︸ ︷︷ ︸
after

≤ D(x)� i︸ ︷︷ ︸
after

≤ (min D([v ]−i )� i) + 1︸ ︷︷ ︸
before

�
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The first algorithm Visit-Algorithm

Visit([v ]i ):

Require: [v ]i is minimal
if i = 0 then

visit v {This visit refers to the basic visitng Algorithm}
return

end if
if [v ]i has not been visited previously then

xi ([v ]i ) := min D([v ]−i )� i − 1
end if
repeat

while ∃ child [w ]i−1 of [v ]i such that min D([w ]−i−1)� i − 1 = xi ([v ]i ) do

assert(min D([v ]−i )� i = min d([v ]−i )� i)
assert([w ]i−1 is minimal)
Visit([w ]i−1)

end while
xi ([v ]i ) := xi ([v ]i ) + 1

until [v ]−i = ∅ ∨ xi ([v ]i )� 1 is increased
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Conclusion

• An unusual algorithm for visiting vertices has been presented.

• With this algorithmic structure and some additional data structures, a
linear time and linear space algorithm can be created.

• Uses (among others) atomic heaps

• Linear time characteristics only achievable for more than 21220

vertices.
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Conclusion

Mikkel Thorup.
Undirected Single-Source Shortest Paths with Positive Integer Weights
in Linear Time.
J. ACM, 46(3):362–394, 1999.
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Conclusion

Thank you!
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