Title

Ferienakademie im Sarntal - Course 2
 Distance Problems: Theory and Praxis

Nesrine Damak

Fakultät für Informatik
TU München
20. September 2010

Outline

(1) Introduction

Definitions
The Shortest Path Problem
(2) Single-Source Shortest Paths

Breadth First Search BFS
Dijkstra-Algorithm
Bellman-Ford
(3) All Pairs Shortest Paths

Floyd Warshall algorithm
Johnson algorithm

Definition

A graph $G(V, E)$ is a set V of vertices, a set E of edges, and a real-valued weight function $w: E \longrightarrow R$.

Definition

A path P in G is a sequence of vertices $\left(v_{1}, . ., v_{n}\right)$ such that $\left(v_{i}, v_{i+1}\right) \in E$ for all $1 \leq i<n$ and $v \in V$.

Definition

The weight of a path P in G is the sum of the weights of its edges:
$w(P)=\sum_{i} w\left(v_{i-1}, v_{i}\right)$.

Definition

For nodes $u, v \in V$, the shortest path weight from u to v is defined to be: $\delta(u, v)=\min (w(P))$ if such a P exists or infinity otherweise.

Definition

For nodes $u, v \in V$ a shortest path from u to v is a path with $w(P)=\delta(u, v)$

Applications of the Shortest Path Problem

- find the best route to drive between Berlin and Munich or figure how to direct packets to a destination across a network
- image segmentation
- speech recognition
- find the center point of a graph: the vertex that minimizes the maximum distance to any other vertex in the graph.

Input: A graph $G=(\mathrm{V}, \mathrm{E})$, an edge weight function w and a node $s \in V$. Output: A shortest path P from s to all other vertices $v \in V-\{s\}$. Algorithmen:

- unweighted case : BFS
- no negativ edge-weights : Dijkstra-Algorithm
- general case : Bellman-Ford Algorithm

Notation

- $\operatorname{dist}(x)$: distance from the initial node to x, the shortest path found by the algorithm so far
- Q : FIFO queue
- Suppose that $w(u, v)=1$ for all $u v \in E$
- We use a simple FIFO queue
- Analysis Time: $O(|V|+|E|)$

BFS(G)
while $Q \neq$ empty do
$u \leftarrow \operatorname{DEQUEUE}(Q)$;
for each $v \in \operatorname{adj}(u)$ do
if $\operatorname{dist}(v)=\infty$ then
$\operatorname{dist}(v)=\operatorname{dist}(u)+1 ;$
ENQUEUE (Q, v);
end
end
end

BFS is used to solve following problems:

- Testing whether graph is connected.
- Computing a spanning forest of graph.
- Computing, for every vertex in graph, a path with the minimum number of edges between start vertex and current vertex or reporting that no such path exists.
- Computing a cycle in graph or reporting that no such cycle exists.

Notation

- S:a set of vertices, whose shortest path distances from s are known ("the solved set").
- $\operatorname{dist}(x)$: distance from the initial node to x
- Q: priority queue maintaining V-S
- $\operatorname{pred}(\mathrm{v})$: the predecessor of the vertex v

```
Dijkstra(G,w,s)
dist(s) \leftarrow0;
for v\inV-{s} do
    dist(v)\leftarrow\infty;
end
S \leftarrowempty ;
Q\leftarrowV;
while Q\not= empty do
    u\leftarrow Extract - Min(Q);
    S\leftarrowS\cup{u};
    for v\in\operatorname{adj(u) do}
        if }\operatorname{dist}(v)>\operatorname{dist}(u)+w(u,v) the
                dist}(v)\leftarrow\operatorname{dist}(u)+w(u,v)
    end
    end
end
```


DIJKSTRA'S ALGORITHM

Proof of correctness

Theorem
Dijkstras Algorithm terminates with $\operatorname{dist}(v)=\delta(s, v)$ for all $v \in V$.

Proof.

We show: $\operatorname{dist}(v)=\delta(s, v)$ for every $v \in V$ when v is added to S. Supposition:

- v is the first vertex added to S, so that $\operatorname{dist}(v)>\delta(s, v)$
- y is the first vertex in $V-S$ along a shortest path from s to v
- $x=\operatorname{pred}(y) \in S$
then:
- $\operatorname{dist}(x)=\delta(s, x)$
- xy is relaxed: $\operatorname{dist}(y)=\delta(s, y) \leq \delta(s, v)<\operatorname{dist}(v)$

CONTRADICTION because $\operatorname{dist}(v) \leq \operatorname{dist}(y)$!

Time complexity

Supposition: Fibonacci-heaps
Initialization $O(|V|)$
Extract-Min $\quad|V| O(\log |V|)$
DecreaseKey $|E| O(|V|)$
so is the time complexity of Dijkstra : $O(|E|+|V| \log |V|)$

The main idea is that if the edge uv is the last edge of the shortest path to v , the cost of the shortest path to v is the cost of the shortest path to u plus the weight of $w(u, v)$. Bellman-Ford algorithm finds all shortest-path lengths from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

```
Bellman-Ford(G,w,s)
dist(s) \leftarrow0;
for v\inV-{s} do
        dist(v)\leftarrow\infty;
    pred(v):= null;
end
```

for i from 1 to $|V|-1$ do
for each edge $u v \in E$ do if $\operatorname{dist}(u)+w(u, v)<\operatorname{dist}(v)$ then $\operatorname{dist}(v):=\operatorname{dist}(u)+w(u, v)$; $\operatorname{pred}(v):=u$;
end
end
end
for each edge $u v \in E$ do
if $\operatorname{dist}(u)+w(u, v)<\operatorname{dist}(v)$ then error "Graph contains a negative-weight cycle" ; end
end

BELLMAN-FORD ALGORITHM

Proof of correctness

Theorem
if $G=(V, E)$ contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $\operatorname{dist}(v)=\delta(s, v)$ for all $v \in V$

Proof.

let $v \in V$ be any vertex, and consider a shortest path P from s to v with the minimum number of edges.
we have: $\delta\left(s, v_{i}\right)=\delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)$.
Initially: $\operatorname{dist}\left(v_{0}\right)=0=\delta\left(s, v_{0}\right)$
After 1 pass through $\mathrm{E}: \operatorname{dist}\left(v_{1}\right)=\delta\left(s, v_{1}\right)$

After k passes through $\mathrm{E}: \operatorname{dist}\left(v_{k}\right)=\delta\left(s, v_{k}\right)$
Longest simple path has $\leq|V|-1$ edges.

Time complexity

The Bellman-Ford algorithm simply relaxes all the edges, and does this $|V|-1$ times: It runs in $O(|V| \cdot|E|)$ time: the best time bound for the sssp problem.

Input: A connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and an edge weight function w . Output: For all pairs $u, v \in V$ of nodes a shortest path from u to v $\rightarrow \mathrm{a}|V| \times|V|$-matrix.

Possible algorithms:

- Naive implementation: Use standard single-source algorithms $|V|$ times
- Dijkstra : running a $O(E+V \log V)$ process $|V|$ times
- Bellman-Ford algorithm on a dense graph will take about $O\left(V^{2} E\right)$
- Floyd Warshall algorithm
- Johnson algorithm

Notation

- $\operatorname{dist}^{(k)}(i, j)$ is the distance from i to j with intermediate vertices belonging to the set $\{1,2, \ldots, k\}$

```
Floyd-Warshall(G,w)
for \(i=1\) to \(V\) do
for \(j=1\) to \(V\) do
if there is an edge from \(i\) to \(j\) then
                dist \({ }^{(0)}(i, j)=\) the length of the edge from \(i\) to \(j ;\)
            end
        dist \({ }^{(0)}(i, j)=\infty ;\)
    end
end
for \(k=1\) to \(V\) do
        for \(i=1\) to \(V\) do
            for \(j=1\) to \(V\) do
                \(\operatorname{dist}^{(k)}(i, j)=\)
                \(\min \left(\operatorname{dist}^{(k-1)}(i, j), \operatorname{dist}^{(k-1)}(i, k)+\operatorname{dist}^{(k-1)}(k, j)\right) ;\)
    end
    end
end
```

- The algorithms running time is clearly $O\left(|V|^{3}\right)$
- $\operatorname{DIST}^{(k)}$ is the $|V| \times|V|$ Matrix $\left[\operatorname{dist}^{(k)}(i, j)\right]$.
- dist $^{(0)}(i, j)=w(i, j)$ (no intermediate vertex $=$ the edge from i to j)
- Claim: $\operatorname{dist}^{(|V|)}(i, j)$ is the length of the shortest path from i to j . So our aim is to compute $\operatorname{DIST} T^{(|V|)}$.
- Subproblems: compute $\operatorname{DIST}{ }^{(k)}$ for $k=0, \ldots,|V|$ (dynamic!)

How do we compute $\operatorname{dist}^{(k)}(i, j)$ assuming that we have already computed the previous matrix $D I S T^{(k-1)}$?
We dont go through \mathbf{k} at all: Then the shortest path from i to j uses only intermediate vertices $\{1, \ldots, k-1\}$ and hence the length of the shortest path is dist ${ }^{(k-1)}(i, j)$.

We do go through \mathbf{k} : we can assume that we pass through k exactly once (no negative cycles). That is, we go from i to k, and then from k to j : we should take the shortest path from i to k , and the shortest path from k to j (optimality).
Each of these paths uses intermediate vertices only in $\{1,2, . ., k-1\}$. The length of the path is : dist ${ }^{(k-1)}(i, k)+$ dist $^{(k-1)}(k, j)$.
This suggests the following recursive rule for computing DIST ${ }^{(k)}$:

- $\operatorname{dist}^{(0)}(i, j)=w(i, j)$
- $\operatorname{dist}^{(k)}(i, j)=\min \left(\operatorname{dist}^{(k-1)}(i, j), \operatorname{dist}^{(k-1)}(i, k)+\operatorname{dist}^{(k-1)}(k, j)\right)$

After $|V|$ iterations, $\operatorname{dist}^{|V|}(i, j)$ is the shortest path between i and j .

Notation

a shortest-path tree rooted at the source vertex s is a directed subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where V^{\prime} and E^{\prime} are subsets of V and E respectively, such that

- V^{\prime} is the set of vertices reachable from s in G
- G^{\prime} forms a rooted tree with root s
- for all $v \in V^{\prime}$, the unique path from s to $v \in G^{\prime}$ is the shortest path from s to v in G

Idea:

- Add a new node s so that $w(s, v)=0$ for all $v \in V \rightarrow$ a new graph G^{\prime}.
- Use the BellmanFord algorithm to check for negative weight cycles and find $h(v)=\delta(s, v)$ in G^{\prime}.
- Reweight the edges using $h(v)$ with the reweighting function $\hat{w}(u, v) \leftarrow w(u, v)+h(u)-h(v)$.
- Use Dijkstras algorithm on the transformed graph (with no negative edges) in order to find the shortest path.

Pseudocode

Johnson(G,w)
Compute G^{\prime}, where $V\left[G^{\prime}\right]=V[G] \cup s$; $E\left[G^{\prime}\right]=E[G] \cup(s, v): v \in V[G]$;
for all $v \in V[G]$ do $w(s, v)=0 ;$
end
if $B E L L M A N-F O R D\left(G^{\prime}, w, s\right)=F A L S E$ then print the input graph contains a negative weight cycle ;

end

for each vertex $v \in V\left[G^{\prime}\right]$ do
set $h(v)$ to the value of $\delta(s, v)$ computed by the Bellman-Ford alg.;

end

for each edge $(u, v) \in E\left[G^{\prime}\right]$ do

$$
\hat{w}(u, v) \leftarrow w(u, v)+h(u)-h(v) ;
$$

for each vertex $u \in V[G]$ do run $\operatorname{DIJKSTRA}(G, \hat{w}, u)$ to compute $\delta^{\prime}(u, v)$ for all $v \in V[G]$; for each vertex $v \in V[G]$ do $\operatorname{dist}(u, v) \leftarrow \delta^{\prime}(u, v)+h(v)-h(u) ;$ end
end
end

(a)

Are all the \hat{w} 's non-negative? YES

$\delta(s, u)+w(u, v) \geq \delta(s, v)$ otherwise $s \rightarrow u \rightarrow v$ would be shorter than the shortest path $s \rightarrow v$

$$
\begin{aligned}
& \text { Does the reweighting preserve the shortest path? YES } \\
& \hat{w}(p)=\sum \hat{w}\left(v_{i}, v_{i+1}\right) \\
& =w\left(v_{1}, v_{2}\right)+\delta\left(s, v_{1}\right)-\delta\left(s, v_{2}\right)+\ldots \ldots+w\left(v_{k-1}, v_{k}\right)+\delta\left(s, v_{k-1}\right)-\delta\left(s, v_{k}\right) \\
& =w(p)+\delta\left(s, v_{1}\right)-\delta\left(s, v_{k}\right)
\end{aligned}
$$

Time complexity

(1) Computing G: $\Theta(V)$
(2) Bellman-Ford: $\Theta(V E)$
(3) Reweighting: $\Theta(E)$
(4) Running (Modified) Dijkstra: $\Theta\left(V^{2} \lg V+V E\right)$
(5) Adjusting distances: $\Theta\left(V^{2}\right)$

Total is dominated by Dijkstra: $\Theta\left(V^{2} \lg V+V E\right)$

Thank you!

