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Introduction

Introduction

• u literal ⇔ u=x(variable) or u = x̄ (negation of x)

• A finite set C of literals over pairwise distinct variables is called a
clause.

• A finite set of clauses is called a formula in CNF (Conjunctive Normal
Form). CNFs which have no more than k distinguishing literals are
denoted (≤ k) CNF formulas, ones with exactly k literals k-CNF
formulas.

Example

For a (≤ 3)-CNF formula

(ā ∨ b̄ ∨ c̄) ∧ (a ∨ c) a, b, c ∈ {0, 1}
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Introduction

Introduction

• The task of deciding whether a CNF-formula F is satisfiable is labelled
satisfiability problem (short: SAT)

• A mapping α: V → {0,1} is called (truth) assignment.

• SAT is first NP-complete problem (shown by Stephen A.Cook)
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Algorithm for solving k-SAT brute-force and splitting

brute-force and splitting

• assignment F is satisfiable iff F |[x :=1] or F |[x :=0] is
⇒ recursive O(2npoly(n))-algorithm
⇒ upper bound for the runtime

• Especially for small k better runtimes possible: for instance for 3-SAT
Rodošek achieved O(1.476n)
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Random Walk algorithm by Uwe Schöning

The basic idea

• applying a Monte Carlo approach onto k-SAT

• similarities:

• same configuration space Zn
2

• Choosing an initial element uniformly at random

• differences

• Selection of the coordinate/atom/literal
• “Flipping rule”
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

The basic idea

The probability that we do not find a satisfying assignment after t
repetitions with independent random bits is

[1− Pr(N ≤ 3n)]t ≤ e−Pr(N≤3n)t

Example

For an error probability less than 10−3, you need t := 3·ln(10)
Pr(N≤3n)

independent repetitions of Schöning’s algorithm.
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Pseudocode

Schöning((≤ k)-CNF formula F)

1: α
u.a.r.← {0, 1}n // sample α uniformly at random

2: return Schöning-Walk(F, α)

Schöning-Walk((≤ k)-CNF formula F, assignment α)
1: for i = 0, .., t do
2: for i = 0, .., 3n do
3: if α satisfies F then
4: return α
5: else
6: C ← any clause of F unsatisfied by α

7: u
u.a.r.← C // a random literal from C

8: α ← α[u 7→ 1]
9: endif
10: endfor
11:return failure
12: endfor
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Theorem 1
If the input k-SAT instance is satisfiably, then algorithm Schöning needs

on expectation O
((

2(k−1)
k

)n)
tries to find a satisfying assignment.

Proof

• WANTED : Pr(∃t ≤ 3n : Yt = 0)

• Consider the Markov chain:

• Let Nj the random variable that counts the number of steps until the
first encounter of state 0
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.2
For q < 1

2 and j ∈ N0:

Pr(Nj <∞) =

(
q

1− q

)j

Proof

Pr(Nj <∞) =
∞∑
i=0

(
2i + j

i

)
· j

2i + j
· (1− q)i · qi+j

= qj ·
∞∑
i=0

(
2i + j

i

)
· j

2i + j
· (q · (1− q))i

= qj · (B2(q(1− q)))j
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

for B2(z) being the generalized Binomial series defined by

B2(z) =
∑
i

(
2i + 1

i

)
· z i

2i + 1
=

1−
√

1− 4z

2z

for which

(B2(z))r =
∑
i

(
2i + r

i

)
· r

2i + 1
· z i

∀r ∈ N0. So

Pr(Nj <∞) = qj ·

(
1−

√
1− 4q + 4q2

2(1− q)q

)j

= qj ·
(

1

1− q

)j
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.3
For q < 1

2 andl j ∈ N0 it holds:

E(Nj | Nj >∞) =
j

1− 2q

Proof

E(Nj | Nj <∞) =
1

Pr(Nj <∞)
·

∞∑
i=0

(2i + j) ·
(

2i + j

i

)
· j

2i + j
· (1− q)i · qi+j

Lemma2.2
= j · (1− q)j ·

∞∑
i=0

(2i + j) ·
(

2i + j

i

)
· (q · (1− q))i

= j · (1− q)j · (B2(q(1− q)))j√
1− 4q(1− q)

=
j

1− 2q
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.4
Let N the random variable that counts the number of steps until state 0 is
encountered for the first time. For q < 1

2 it holds, while n is still the
number of variables:

Pr(N <∞) =

(
1

2(1− q)

)n

Proof

Pr(N <∞) =
n∑

j=0

(
n

j

)
· 2−n · Pr(Nj <∞)

Lemma2.2
=

n∑
j=0

(
n

j

)
· 2−n ·

(
q

1− q

)j

=

(
1

2(1− q)

)n
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.5
For q < 1

2 it holds:

E(N | N <∞) =
qn

1− 2q

Proof

E(N | N <∞) =
∑
i

i · Pr(N = i | N <∞) =

=
∑
i

i ·
n∑

j=0

(
n

j

)
· Pr(Nj = i | N <∞) =

=
2−n

Pr(N <∞)
·

n∑
j=0

(
n

j

)
·
∑
i

i · Pr(Nj = i) =
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

=
2−n

Pr(N <∞)
·

n∑
j=0

(
n

j

)
· E(Nj | Nj <∞) · Pr(Nj <∞)

Lemma2.2,2.3,2.4
= (1− q)n ·

n∑
j=0

(
n

j

)
· j

1− 2q
·
(

q

1− q

)j

=
n · (1− q)n

1− 2q
·

n∑
j=0

(
n − 1

j − 1

)
·
(

q

1− q

)j

=
n · (1− q)n

1− 2q
· q

1− q
·
(

1 +
q

1− q

)n−1

=
nq

1− 2q
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.6
For q < 1

2 and λ ≥ 1 it holds:

Pr

(
N ≤ λqn

1− 2q

)
>

(
1− 1

λ

)
·
(

1

2(1− q)

)n

Proof:
Write µ for E(N | N <∞).Observe that

Pr(N > λµ | N <∞) <
1

λ

by Markov’s inequality, and
Pr(N ≤ λµ) = Pr(N > λµ | N <∞) · Pr(N <∞)
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Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Now using q = 1
k , k ≥ 3 and λ = 3, we obtain

Pr(∃t ≤ 3n : Yt = 0) = Pr(N ≤ 3n) >
2

3

(
k

2(k − 1)

)n

whereas, for a satisfiable formula, the expected number of repetitions of
procedure Schöning until a satisfying assignment is found is at most

1
Pr(N≤3n) :

3

2

(
2(k − 1)

k

)n
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Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Derandomization attempt by Dantsin et al.

The basic idea

• dH(α, β) := |{x ∈ V |α(x) 6= β(x)}| with α, β truth assignments is
called Hamming distance

• Br (α) := {dH(α, β) ≤ r} is denoted Hamming ball, with volume
vol(n, r) := |Bα(r)| =

∑r
i=0

(n
i

)
.

• C ⊆ {0, 1}n covering code of radius r and length n
⇔ ∪α∈CBr (α) = {0, 1}n

• Ball-k-SAT: Decide whether Br (α) contains a satisfying assignment
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Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Pseudocode

cover-search((≤ k)-CNF formula F over n variables)

1: r := n
k+1

2: construct a covering code C of radius r and |C | ≤ 2n

(n
k)
poly(n)

3: return
⋃
α∈C sat − searchball(F , α, r)

sat − searchball((≤ k)-CNF formula F , assignment α, radius r)

1:ifα satisfies F then
2: return true
3: elseif r = 0 then
4: return false
5: else
6: C ← any clause of F unsatisfied by α
7: return

⋃
u∈C sat − searchball(F |u:=1, α, r − 1)

8: endif
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Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Correctness of this algorithm

Initial step

• r = 0 ⇒ B0(α) = {α}

Induction step (r − 1→ r)

• Let be α∗ a satisfying assignment with dH(α, α∗) ≤ r and C the
selected clause

• Let α′ := α∗[u := 0]

• We observe that dH(α, α′) ≤ r − 1 and α′ satisfies F |u:=1(induction
hypothesis).
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Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Estimate of the runtime

Lemma 2.12
The algorithm sat-searchball solves BALL-k-SAT in time O(k rpoly(n)).
Proof:
If F is a (≤ k)-CNF formula, then each call to searchball causes at most k
recursive calls.
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Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Estimate of the runtime

Theorem 2
Suppose some algorithm A solves BALL-k-SAT in O(arpoly(n)) steps.

Then there is an algorithm B solving k-SAT in time O
((

2a
(a+1)

)n
poly(n)

)
,

and B is deterministic if A is.

Proof

Lemma 2.13
For all n ∈ N, 0 ≤ r ≤ n, every code C of covering radius r and length n
has at least 2n

vol(n,r) elements. Furthermore, there is such a C with

|C | ≤ 2npoly(n)

vol(n, r)
,

and furthermore, C can be constructed deterministically in time O( |C |
poly(n)).
Proof: This Lemma is the case k=2 of upcoming Lemma 2.19.
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Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Estimate of the runtime

Lemma 2.14
For 0 ≤ ρ ≤ 1

2 and t ∈ N, it holds that

(
t

ρt

)
≥ 1√

8tρ(1− ρ)

(
1

ρ

)ρt ( 1

1− ρ

)(1−ρ)t

Set r := n
(a+1) and construct a covering code C of radius r and length n

and call A(F, α, r) for each α ∈ C.

|C |arpoly(n)
Lemma2.13
≤ 2narpoly(n)

vol(n, r)

Lemma2.14
≤ 2na

n
a+1 poly(n)

(a + 1)
n

a+1
(
a+1
a

) na
a+1

=

=

(
2a

a + 1

)n

poly(n)
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Complete Derandomization by Moser & Scheder

The basic idea

• further development of Dantsin et al.’s covering code idea

• Promise-Ball-k-SAT:
Ball-k-SAT+ promise that Br (α) contains a satisfying assignment

• k truth values instead of 2

• vol (k)(t, r) := |B(k)(w)| =
(
t
r

)
(k − 1)r , w ∈ {1, ..., k}t

• Let t ∈ N. A set C⊆ {1, .., k}t is called k-ary covering code of radius r

⇔
⋃

w∈C B
(k)
r (w) = {1, .., k}t
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Pseudocode

searchball − fast(k ∈ N, (≤ k)-CNF formula F, assignment α, radius r,
code C⊆ {1, ..., k}t)

1:ifα satisfies F then
2: return true
3: elseif r = 0 then
4: return false
5: else
6: G ← a maximal set of pairwise disjoint k-clauses of F unsatisfied by α
7: if|G | < t then
8: return

⋃
β∈{0,1}vbl(G) sat − searchball(F |[β], α, r)

9: else
10: H ← {C1, ...,Ct} ⊆ G
11: return

⋃
w∈C searchball − fast(k,F , α[H,w ], r − (t − 2t/k),C)

12: endif
13: endif
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Lemma 2.19
∀t, k ∈ N and 0 ≤ s ≤ t

2 . ∃ C ⊆ {1, ..., k}t of covering radius s such that:

|C | ≤

⌈
ln(k) · kt · t(t
s

)
· (k − 1)s

⌉
=: m

and furthermore, C can be constructed deterministically in time O( |C |
poly(t)).
Proof:

Pr

[
w ′ /∈

⋃
w∈C

B
(k)
s (w)

]
=

(
1− vol (k)(t, s)

kt

)|C |
< e−|C |

vol(k)(t,s)

kt

≤ e−t·ln(k) = k−t
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

runtime of constructing such a covering code

• t:= bln(n)c

O(|C | · poly(t)) ≤ O(kt · poly(t)) = O(nln(k) · ploy(ln(n))) = O(poly(n))
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Lemma 2.20
With the aid of Lemma 2.14 and Lemma 2.19 we get the following
approximation of |C | which we will need later. Let ρ be 1

k :

(
t
t
k

)
≥ 1√

8
· k

t
k ·
(

k

k − 1

) (k−1)·t
k

=
kt

√
8t · (k − 1)

(k−1)t
k

So we obtain, for t sufficiently large:

|C | ≤

⌈
ln(k) · kt · t(t
s

)
· (k − 1)s

⌉
≤ t2 · kt · (k − 1)

(k−1)t
k

kt · (k − 1)
t
k

= t2 · (k − 1)t−
2t
k
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m < t

6: G ← a maximal set of pairwise disjoint k-clauses of F unsatisfied by α
7: if|G | < t then
8: return∨β∈{0,1}vbl(G) sat-searchball(F |[β], α, r)

Lemma 2.21
If every clause in F that is not satisfied by α has size at most k - 1, then
sat-searchball(F, α, r) runs in time O((k − 1)rpoly(n)).
Proof:
Since every unsatisfied clause and every F |u:=1 hade at most k - 1 literals,
the algorithm calls itself at worst k – 1 times.
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m < t

2kmO((k − 1)rpoly(n)) ≤ O(2kt(k − 1)rpoly(n)) ≤
≤ O(2ln(n)k(k − 1)rpoly(n)) ≤ O((k − 1)rpoly(n))

Theorem2⇒ runtime k-SAT: O
((

2(k−1)
k

)n)
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m ≥ t

10: H ← {C1, ...,Ct} ⊆ G
11: return∨w∈C searchball-fast(k,F,α[H,w], r-(t-2t/k),C)

• Let α[H,w] be the assignment obtained from α by flipping the value of the w th
i

literal

• Define w∗ ∈ {1, . . . , k}t as follows: for each 1≤ i ≤t set w∗i to j such that α∗

satisfies the jth literal in Ci .

Observe:

• There is some w ∈ {1, ..., k}t such that dH(α[w∗], α∗) = dH(α, α∗)− t

• Let w, w′ ∈ {1, ..., k}t . Then dH(α[w ], α[w ′]) = 2dH(w ,w ′)
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m ≥ t

Lemma 2.24
If α∗ is a satisfying assignment of F, then there is some w ∈ C such that
dH(α[w ], α∗) ≤ dH(α, α∗) - t + 2s. In particular, if Br (α) contains a
satisfying assignment, then there is some w ∈ C such that Br−t+2s(α[w ])
contains it, too.
Proof:
C has covering radius s ⇒ dH(w ,w∗) ≤ s
Observation 2⇒ dH(α[w ], α[w∗]) ≤ 2s

dH(α[w ], α∗) ≤ dH(α[w∗], α∗) + dH(α[w ], α[w∗]) ≤
≤ dH(α, α∗)− t + 2s
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Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m ≥ t

• |C | recursive calls

• decrease of the complexity parameter r by t − 2s = t − 2t
k in each step

|C |
r

t− 2t
k

Lemma2.20
≤

(
t2 · (k − 1)t−

2t
k

) r

t− 2t
k =

(
t

2

t− 2t
k · (k − 1)

)r

= (k − 1)r+o(n)

Theorem2⇒ runtime k-SAT: O

((
2(k−1)

k

)n+o(n)
)

Theorem 3

There is a deterministic algorithm solving k-SAT in time O
(

2(k−1)
k

)n+o(n)
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Conclusion
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