
The Satisfiability Problem:

Random Walk and Derandomization

Timo Eckstein

FAU Erlangen-Nürnberg

21. September 2014 - 3. October 2014

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 1/ 34

Outline

1 Introduction

2 Algorithm for solving k-SAT
brute-force and splitting
Random Walk algorithm by Uwe Schöning

The basic idea
Pseudocode
Estimate of the runtime

Derandomization attempt by Dantsin et al.
The basic idea
Pseudocode
Estimate of the runtime

Complete Derandomization by Moser & Scheder
The basic idea
Pseudocode
Estimate of the runtime

3 Conclusion

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 2/ 34

Introduction

Introduction

• u literal ⇔ u=x(variable) or u = x̄ (negation of x)

• A finite set C of literals over pairwise distinct variables is called a
clause.

• A finite set of clauses is called a formula in CNF (Conjunctive Normal
Form). CNFs which have no more than k distinguishing literals are
denoted (≤ k) CNF formulas, ones with exactly k literals k-CNF
formulas.

Example

For a (≤ 3)-CNF formula

(ā ∨ b̄ ∨ c̄) ∧ (a ∨ c) a, b, c ∈ {0, 1}

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 3/ 34

Introduction

Introduction

• The task of deciding whether a CNF-formula F is satisfiable is labelled
satisfiability problem (short: SAT)

• A mapping α: V → {0,1} is called (truth) assignment.

• SAT is first NP-complete problem (shown by Stephen A.Cook)

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 4/ 34

Algorithm for solving k-SAT brute-force and splitting

brute-force and splitting

• assignment F is satisfiable iff F |[x :=1] or F |[x :=0] is
⇒ recursive O(2npoly(n))-algorithm
⇒ upper bound for the runtime

• Especially for small k better runtimes possible: for instance for 3-SAT
Rodošek achieved O(1.476n)

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 5/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Random Walk algorithm by Uwe Schöning

The basic idea

• applying a Monte Carlo approach onto k-SAT

• similarities:

• same configuration space Zn
2

• Choosing an initial element uniformly at random

• differences

• Selection of the coordinate/atom/literal
• “Flipping rule”

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 6/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

The basic idea

The probability that we do not find a satisfying assignment after t
repetitions with independent random bits is

[1− Pr(N ≤ 3n)]t ≤ e−Pr(N≤3n)t

Example

For an error probability less than 10−3, you need t := 3·ln(10)
Pr(N≤3n)

independent repetitions of Schöning’s algorithm.

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 7/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Pseudocode

Schöning((≤ k)-CNF formula F)

1: α
u.a.r.← {0, 1}n // sample α uniformly at random

2: return Schöning-Walk(F, α)

Schöning-Walk((≤ k)-CNF formula F, assignment α)
1: for i = 0, .., t do
2: for i = 0, .., 3n do
3: if α satisfies F then
4: return α
5: else
6: C ← any clause of F unsatisfied by α

7: u
u.a.r.← C // a random literal from C

8: α ← α[u 7→ 1]
9: endif
10: endfor
11:return failure
12: endfor

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 8/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Theorem 1
If the input k-SAT instance is satisfiably, then algorithm Schöning needs

on expectation O
((

2(k−1)
k

)n)
tries to find a satisfying assignment.

Proof

• WANTED : Pr(∃t ≤ 3n : Yt = 0)

• Consider the Markov chain:

• Let Nj the random variable that counts the number of steps until the
first encounter of state 0

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 9/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.2
For q < 1

2 and j ∈ N0:

Pr(Nj <∞) =

(
q

1− q

)j

Proof

Pr(Nj <∞) =
∞∑
i=0

(
2i + j

i

)
· j

2i + j
· (1− q)i · qi+j

= qj ·
∞∑
i=0

(
2i + j

i

)
· j

2i + j
· (q · (1− q))i

= qj · (B2(q(1− q)))j

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 10/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

for B2(z) being the generalized Binomial series defined by

B2(z) =
∑
i

(
2i + 1

i

)
· z i

2i + 1
=

1−
√

1− 4z

2z

for which

(B2(z))r =
∑
i

(
2i + r

i

)
· r

2i + 1
· z i

∀r ∈ N0. So

Pr(Nj <∞) = qj ·

(
1−

√
1− 4q + 4q2

2(1− q)q

)j

= qj ·
(

1

1− q

)j

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 11/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.3
For q < 1

2 andl j ∈ N0 it holds:

E(Nj | Nj >∞) =
j

1− 2q

Proof

E(Nj | Nj <∞) =
1

Pr(Nj <∞)
·

∞∑
i=0

(2i + j) ·
(

2i + j

i

)
· j

2i + j
· (1− q)i · qi+j

Lemma2.2
= j · (1− q)j ·

∞∑
i=0

(2i + j) ·
(

2i + j

i

)
· (q · (1− q))i

= j · (1− q)j · (B2(q(1− q)))j√
1− 4q(1− q)

=
j

1− 2q

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 12/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.4
Let N the random variable that counts the number of steps until state 0 is
encountered for the first time. For q < 1

2 it holds, while n is still the
number of variables:

Pr(N <∞) =

(
1

2(1− q)

)n

Proof

Pr(N <∞) =
n∑

j=0

(
n

j

)
· 2−n · Pr(Nj <∞)

Lemma2.2
=

n∑
j=0

(
n

j

)
· 2−n ·

(
q

1− q

)j

=

(
1

2(1− q)

)n

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 13/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.5
For q < 1

2 it holds:

E(N | N <∞) =
qn

1− 2q

Proof

E(N | N <∞) =
∑
i

i · Pr(N = i | N <∞) =

=
∑
i

i ·
n∑

j=0

(
n

j

)
· Pr(Nj = i | N <∞) =

=
2−n

Pr(N <∞)
·

n∑
j=0

(
n

j

)
·
∑
i

i · Pr(Nj = i) =

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 14/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

=
2−n

Pr(N <∞)
·

n∑
j=0

(
n

j

)
· E(Nj | Nj <∞) · Pr(Nj <∞)

Lemma2.2,2.3,2.4
= (1− q)n ·

n∑
j=0

(
n

j

)
· j

1− 2q
·
(

q

1− q

)j

=
n · (1− q)n

1− 2q
·

n∑
j=0

(
n − 1

j − 1

)
·
(

q

1− q

)j

=
n · (1− q)n

1− 2q
· q

1− q
·
(

1 +
q

1− q

)n−1

=
nq

1− 2q

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 15/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Lemma 2.6
For q < 1

2 and λ ≥ 1 it holds:

Pr

(
N ≤ λqn

1− 2q

)
>

(
1− 1

λ

)
·
(

1

2(1− q)

)n

Proof:
Write µ for E(N | N <∞).Observe that

Pr(N > λµ | N <∞) <
1

λ

by Markov’s inequality, and
Pr(N ≤ λµ) = Pr(N > λµ | N <∞) · Pr(N <∞)

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 16/ 34

Algorithm for solving k-SAT Random Walk algorithm by Uwe Schöning

Estimate of the runtime

Now using q = 1
k , k ≥ 3 and λ = 3, we obtain

Pr(∃t ≤ 3n : Yt = 0) = Pr(N ≤ 3n) >
2

3

(
k

2(k − 1)

)n

whereas, for a satisfiable formula, the expected number of repetitions of
procedure Schöning until a satisfying assignment is found is at most

1
Pr(N≤3n) :

3

2

(
2(k − 1)

k

)n

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 17/ 34

Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Derandomization attempt by Dantsin et al.

The basic idea

• dH(α, β) := |{x ∈ V |α(x) 6= β(x)}| with α, β truth assignments is
called Hamming distance

• Br (α) := {dH(α, β) ≤ r} is denoted Hamming ball, with volume
vol(n, r) := |Bα(r)| =

∑r
i=0

(n
i

)
.

• C ⊆ {0, 1}n covering code of radius r and length n
⇔ ∪α∈CBr (α) = {0, 1}n

• Ball-k-SAT: Decide whether Br (α) contains a satisfying assignment

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 18/ 34

Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Pseudocode

cover-search((≤ k)-CNF formula F over n variables)

1: r := n
k+1

2: construct a covering code C of radius r and |C | ≤ 2n

(n
k)
poly(n)

3: return
⋃
α∈C sat − searchball(F , α, r)

sat − searchball((≤ k)-CNF formula F , assignment α, radius r)

1:ifα satisfies F then
2: return true
3: elseif r = 0 then
4: return false
5: else
6: C ← any clause of F unsatisfied by α
7: return

⋃
u∈C sat − searchball(F |u:=1, α, r − 1)

8: endif

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 19/ 34

Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Correctness of this algorithm

Initial step

• r = 0 ⇒ B0(α) = {α}

Induction step (r − 1→ r)

• Let be α∗ a satisfying assignment with dH(α, α∗) ≤ r and C the
selected clause

• Let α′ := α∗[u := 0]

• We observe that dH(α, α′) ≤ r − 1 and α′ satisfies F |u:=1(induction
hypothesis).

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 20/ 34

Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Estimate of the runtime

Lemma 2.12
The algorithm sat-searchball solves BALL-k-SAT in time O(k rpoly(n)).
Proof:
If F is a (≤ k)-CNF formula, then each call to searchball causes at most k
recursive calls.

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 21/ 34

Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Estimate of the runtime

Theorem 2
Suppose some algorithm A solves BALL-k-SAT in O(arpoly(n)) steps.

Then there is an algorithm B solving k-SAT in time O
((

2a
(a+1)

)n
poly(n)

)
,

and B is deterministic if A is.

Proof

Lemma 2.13
For all n ∈ N, 0 ≤ r ≤ n, every code C of covering radius r and length n
has at least 2n

vol(n,r) elements. Furthermore, there is such a C with

|C | ≤ 2npoly(n)

vol(n, r)
,

and furthermore, C can be constructed deterministically in time O(|C |
poly(n)).
Proof: This Lemma is the case k=2 of upcoming Lemma 2.19.

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 22/ 34

Algorithm for solving k-SAT Derandomization attempt by Dantsin et al.

Estimate of the runtime

Lemma 2.14
For 0 ≤ ρ ≤ 1

2 and t ∈ N, it holds that

(
t

ρt

)
≥ 1√

8tρ(1− ρ)

(
1

ρ

)ρt (1

1− ρ

)(1−ρ)t

Set r := n
(a+1) and construct a covering code C of radius r and length n

and call A(F, α, r) for each α ∈ C.

|C |arpoly(n)
Lemma2.13
≤ 2narpoly(n)

vol(n, r)

Lemma2.14
≤ 2na

n
a+1 poly(n)

(a + 1)
n

a+1
(
a+1
a

) na
a+1

=

=

(
2a

a + 1

)n

poly(n)

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 23/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Complete Derandomization by Moser & Scheder

The basic idea

• further development of Dantsin et al.’s covering code idea

• Promise-Ball-k-SAT:
Ball-k-SAT+ promise that Br (α) contains a satisfying assignment

• k truth values instead of 2

• vol (k)(t, r) := |B(k)(w)| =
(
t
r

)
(k − 1)r , w ∈ {1, ..., k}t

• Let t ∈ N. A set C⊆ {1, .., k}t is called k-ary covering code of radius r

⇔
⋃

w∈C B
(k)
r (w) = {1, .., k}t

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 24/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Pseudocode

searchball − fast(k ∈ N, (≤ k)-CNF formula F, assignment α, radius r,
code C⊆ {1, ..., k}t)

1:ifα satisfies F then
2: return true
3: elseif r = 0 then
4: return false
5: else
6: G ← a maximal set of pairwise disjoint k-clauses of F unsatisfied by α
7: if|G | < t then
8: return

⋃
β∈{0,1}vbl(G) sat − searchball(F |[β], α, r)

9: else
10: H ← {C1, ...,Ct} ⊆ G
11: return

⋃
w∈C searchball − fast(k,F , α[H,w], r − (t − 2t/k),C)

12: endif
13: endif

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 25/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Lemma 2.19
∀t, k ∈ N and 0 ≤ s ≤ t

2 . ∃ C ⊆ {1, ..., k}t of covering radius s such that:

|C | ≤

⌈
ln(k) · kt · t(t
s

)
· (k − 1)s

⌉
=: m

and furthermore, C can be constructed deterministically in time O(|C |
poly(t)).
Proof:

Pr

[
w ′ /∈

⋃
w∈C

B
(k)
s (w)

]
=

(
1− vol (k)(t, s)

kt

)|C |
< e−|C |

vol(k)(t,s)

kt

≤ e−t·ln(k) = k−t

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 26/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

runtime of constructing such a covering code

• t:= bln(n)c

O(|C | · poly(t)) ≤ O(kt · poly(t)) = O(nln(k) · ploy(ln(n))) = O(poly(n))

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 27/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Lemma 2.20
With the aid of Lemma 2.14 and Lemma 2.19 we get the following
approximation of |C | which we will need later. Let ρ be 1

k :

(
t
t
k

)
≥ 1√

8
· k

t
k ·
(

k

k − 1

) (k−1)·t
k

=
kt

√
8t · (k − 1)

(k−1)t
k

So we obtain, for t sufficiently large:

|C | ≤

⌈
ln(k) · kt · t(t
s

)
· (k − 1)s

⌉
≤ t2 · kt · (k − 1)

(k−1)t
k

kt · (k − 1)
t
k

= t2 · (k − 1)t−
2t
k

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 28/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m < t

6: G ← a maximal set of pairwise disjoint k-clauses of F unsatisfied by α
7: if|G | < t then
8: return∨β∈{0,1}vbl(G) sat-searchball(F |[β], α, r)

Lemma 2.21
If every clause in F that is not satisfied by α has size at most k - 1, then
sat-searchball(F, α, r) runs in time O((k − 1)rpoly(n)).
Proof:
Since every unsatisfied clause and every F |u:=1 hade at most k - 1 literals,
the algorithm calls itself at worst k – 1 times.

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 29/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m < t

2kmO((k − 1)rpoly(n)) ≤ O(2kt(k − 1)rpoly(n)) ≤
≤ O(2ln(n)k(k − 1)rpoly(n)) ≤ O((k − 1)rpoly(n))

Theorem2⇒ runtime k-SAT: O
((

2(k−1)
k

)n)

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 30/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m ≥ t

10: H ← {C1, ...,Ct} ⊆ G
11: return∨w∈C searchball-fast(k,F,α[H,w], r-(t-2t/k),C)

• Let α[H,w] be the assignment obtained from α by flipping the value of the w th
i

literal

• Define w∗ ∈ {1, . . . , k}t as follows: for each 1≤ i ≤t set w∗i to j such that α∗

satisfies the jth literal in Ci .

Observe:

• There is some w ∈ {1, ..., k}t such that dH(α[w∗], α∗) = dH(α, α∗)− t

• Let w, w′ ∈ {1, ..., k}t . Then dH(α[w], α[w ′]) = 2dH(w ,w ′)

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 31/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m ≥ t

Lemma 2.24
If α∗ is a satisfying assignment of F, then there is some w ∈ C such that
dH(α[w], α∗) ≤ dH(α, α∗) - t + 2s. In particular, if Br (α) contains a
satisfying assignment, then there is some w ∈ C such that Br−t+2s(α[w])
contains it, too.
Proof:
C has covering radius s ⇒ dH(w ,w∗) ≤ s
Observation 2⇒ dH(α[w], α[w∗]) ≤ 2s

dH(α[w], α∗) ≤ dH(α[w∗], α∗) + dH(α[w], α[w∗]) ≤
≤ dH(α, α∗)− t + 2s

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 32/ 34

Algorithm for solving k-SAT Complete Derandomization by Moser & Scheder

Estimate of the runtime

Case m ≥ t

• |C | recursive calls

• decrease of the complexity parameter r by t − 2s = t − 2t
k in each step

|C |
r

t− 2t
k

Lemma2.20
≤

(
t2 · (k − 1)t−

2t
k

) r

t− 2t
k =

(
t

2

t− 2t
k · (k − 1)

)r

= (k − 1)r+o(n)

Theorem2⇒ runtime k-SAT: O

((
2(k−1)

k

)n+o(n)
)

Theorem 3

There is a deterministic algorithm solving k-SAT in time O
(

2(k−1)
k

)n+o(n)

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 33/ 34

Conclusion

U. Schöning:
A probabilistic algorithm for k-SAT based on limited local search and restart;
Algorithmica 32 (2002) 615-623

R.A. Moser, D. Scheder:
A Full Derandomization of Schöninger’s k-SAT Algorithm; in Proc. 43rd ACM
Symp. On Theory of Computing (STOC), pp. 245-251, 2011

D. Scheder:
Algorithms and Extremal Properties of SAT and CSP, dissertation, Swiss Federal
Institute of Technology Zurich, 2011

E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P.Raghavan, U. Schöning:
A deterministic (2− 2

k+1
)n algorithm for k-SAT based on local search. Theoretical

Computer Science, Volumne 289, Issue 1, 23 October 2002, Page 69-83

F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. II.
North- Holland Publishing Co., Amsterdam, 1977. North-Holland Mathematical
Library, Vol. 16.

Timo Eckstein: The Satisfiability Problem: Random Walk and Derandomization 34/ 34

	Introduction
	Algorithm for solving k-SAT
	brute-force and splitting
	Random Walk algorithm by Uwe Schöning
	Derandomization attempt by Dantsin et al.
	Complete Derandomization by Moser & Scheder

	Conclusion

